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Random Surfaces in Statistical Mechanics: 
Roughening, Rounding, Wetting,... 
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In this paper we study several problems in statistical mechanics involving 
systems of fluctuating extended objects, such as interacting steps and domain 
walls. We reconsider the roughening transition and relate it to the free energy of 
a gas of steps and to the rounding of facets in the equilibrium shape of crystals, 
defined via the Wulff construction. Using an idealized description due to Fisher 
and Fisher we analyze the commensurate-incommensurate transition in uniaxial 
systems in terms of a gas of interacting domain walls. We also study the interac- 
tions between a domain wall and a rigid wall and between two interfaces, a 
problem which is central for the understanding of wetting. Among our results 
are a quantitative analysis of entropic repulsion between extended objects and a 
calculation of deviations from mean-field theory in the commensurate- 
incommensurate transition in dimension 2 ~< d~< 3. 

KEY WORDS: Random surfaces; roughening; commensurate-incommen- 
surate transition; wetting. 

1. INTRODUCTION 

F r o m  the growth of crystals to conf inement  in gauge theories, there is a 
large variety of physical phenomena  connected with the statistical 
mechanics of r a n d o m  surfaces. In  recent years, considerable progress has 

been achieved in cons t ruct ing  a mathemat ica l ly  r igorous and  physically 
interest ing theory of one r a n d o m  surface. The ma in  goal of this paper  is to 
under take  a mathemat ica l  analysis of some of the problems dealing with 

several in teract ing r a n d o m  surfaces. 
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The model of random surfaces which is best understood is the solid- 
oft-solid (S.O.S) model which provides an approximate description of an 
interface separating two phases in equilibrium, such as a liquid and a vapor 
phase, or a positively and a negatively magnetized phase in the Ising 
model. One considers a lattice surface which is the graph of a function, 
~b~ ( ,~x)x~,  defined over a parameter space 2 ~ (we shall use the word 
:'surface" for all d), and taking values in Z. It serves to model an interface 
in a lattice system, such as an lsing model, tf  the surface models a con- 
tinuous, e.g., liquid-vapor, interface then ~b is real valued. The Hamiltonian 
is proportional to the total area of the surface. Suppose that we pin the sur- 
face at a given height on the boundary of a box, A. One of the main 
problems is then: Does the average height of the surface inside A remain 
bounded in the thermodynamic I.imit, }AI -~ co? (Here and in the following 
IAI -+ oo means that A .72U, through a sequence of increasing subsets.) 

For the S.O.S. model, with ~b~ taking values in Y, we know that a 
phase transitiort, called r,~ughening transiIion, takes place only in dJraension 
d = 2 ;  At low temperatures the surface is localized (bounded 
fluctuations), (~-3) while it is delocalized at high temperaturesJ 4~ For d =  t 
at d>~ 3, the situation is not as ir~teresti.qg. ~n the first case, the interface is 
detoca[ized at all temperatures T>0 ,  (s) while it is atways localized in the 
second caseJ 6'7) If we let ~b x vary continuously over the reals, thor1 the tem- 
perature can be scaled away, and we know that, for d =  i, 2, the surface is 
detocalized, 18) while it is localized when d>~ 3. (7) 

Several questions remain open: Which of these results, proven for the 
g.O.S, modet, e• to the Ising, or the liquid-vapour, interface? What 
:an be proven about critical phenomena associated with the roughening 
transition? 

Another problem with the roughening transition is that it is hard to 
detect directly. For d =  2, the divergence of the height of the surface in [AI 
is proportiona] to (log ]AI )J/2 and is therefore a microscopic effect, even for 
a macroscopic A. This problem will be the subject of Section 2. The stan- 
dard answer (for a review see Refs. 9 and 10) is that the roughening trans- 
ition reveals itself in the rounding of facets in the equilibrium shape of a 
(crystalline) droplet of one phase, surrounded by the other phase. In order 
to demonstrate this claim, one appeals to the Wulff construction: I~) Con- 
~der the surface tensoin associated with an interface tired by an angle 0 
with respect to a lattice axis. Then a cusp in the graph of this surface ten- 
sion, as a function of 0, implies the presence of a facet in the equilibrium 
crystal shape. The (one-sided) derivative of the surface tension with respect 
to 0 at 0 = 0, and therefore the strength of the cusp, is assumed to be given 
by the free energy associated with the introduction of a step of height i in 
the interface (i.e., by the stez~-free enerevk This is reasonable, since, as we 



Random Surfaces in Statistical Mechanics 745 

explain in more detail in Section 2, the surface tension of an interface, tilted 
by an angle 0, can be identified approximately with the free energy of a gas 
of steps (of height 1) at a density proportional to 0, for 0 small. Therefore 
we expect that the presence of a cusp in the surface tension, at 0 = 0, wilt be 
equivalent to a nonzero step-free energy, and that the roughening trans- 
ition should be reflected in the vanishing of the step-free energy. 4 In Sec- 
t ion2, we present a result which makes this picture somewhat more 
rigorous: For the Ising model and the S.O.S. model, we prove a correlation 
inequality which says that a nonzero step-free energy implies a cusp at 
0 = 0 in the graph of the surface tension associated with an interface tilted 
by an angle 0. We pose, but do not solve, the problem of constructing 
statistical mechanical methods (e.g., some sort of Mayer expansion) for a 
gas of extended objects, such as the steps appearing in a tilted interface, or 
the vortex lines in a superconductor, etc. (See Ref. 20 for some results.) 

In Section 3, we make some progress in this direction by analyzing a 
gas of random surfaces (or random lines), constrained to lie one above 
another. This problem does not only occur in the study of tilted interfaces, 
but also in the commensura te - incommensura te  transition, where the surfaces 
separate different commensurate regions. (12) Following Ref. 12, we simplify 
the problem by considering every other interface as rigid and flat (we call it 
a "wall"). Thus we are led to study one random surface constrained to fluc- 
tuate between two walls, put up at height - l  and + l. 

To be specific, we consider the model with the following partition 
function: 

a a  = "" [~[ d~)x exp - ~ (~bx __ ~ y ) 2  , 

- - I  " x ~ A  ( x y ) c A  

A c 2  d 

where the integral is replaced by a sum in case we consider an interface on 
a lattice. 

Our first question is: What is the effect of the walls on the free energy, 
g,~ of the system, or more precisely, at what rate does 0~ approach its 
limit, 00(00), as l--+oe? Moreover, since the correlation length, 4, is 
infinite, for l =  ~ ,  one may ask: How does ~(l) diverge when l--+ oo? The 
answer to these questions turns out to provide an example of some critical 
phenomena, where one can rigorously control a deviation from mean-field 
theory. Indeed, McBryan and Spencer ~13~ have shown that, for all dimen- 
sions, a mean-field bound holds, namely, 

~(l) ~ exp(cl 2) 

4 For a rigorous result essentially supporting this claim see Ref. 4. 
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We prove that this bound is qualitatively correct, for d>~ 3, but that there 
are corrections, for d =  1, 2. More precisely 

~(l)~cl 2, if d =  1 

exp(cll)4~(l)<~exp(c2l), if d = 2  

The result for d =  1 follows easily from the transfer-matrix formalism, (see 
Ref. 12 and Appendix 2), but the result for d = 2  is more delicate (see 
Theorem 3.1). Using the information on ~(l) we get 

l 
l a, d = l  

1~~ O~ ~ e x p ( -  el), d = 2  

exp(--cl2), d>~ 2 

(see Theorem 3.1). These results permit us to give a rigorous mathematical 
basis to some of the Ansiitze in an analysis of the commensurate-  
incommensurate transition in Ref. 12. 

In Section 4, we discuss the interaction of one random surface with 
one fixed wall, i.e., the surface is constrained to fluctuate above a rigid wall. 
The surface separates a droplet of a B phase put on the wall from a 
surrounding A phase. When phases A and B are in equilibrium, one wants 
to know whether phase B wets the wall or not. In our model, we constrain 
the surface to stick to the wall on the boundary of a box A, and we ask 
whether the height of the surface above the wall near the center of the wall 
diverges in the thermodynamic limit, IA] ~ o% in which case we say that 
the B phase wets the wail. There is an extensive literature on the wetting 
transition; a transition which can be of first or of higher order. For  reviews 
see Refs. 14-17. However, rigorous results mostly concern two-dimensional 
models, i.e., one-dimensional surfaces, or lines. (ls'19) We investigate these 
models in higher dimensions; in particular, we analyze in detail the 
phenomenon of entropic repulsion: Consider an S.O.S. surface which, in the 
absence of a wall, would be almost flat at low temperatures or in dimen- 
sion d > 2. We show that, under the same conditions, the height of this sur- 
face above the wall diverges. This is an entropic effect. The surface has 
more freedom to fluctuate if it is far from the wall than if it is close to it. 
We obtain precise estimates on the rate of divergence of this height, as a 
function of the size of the box, in different dimensions and for a variety of 
models. 

Of course we can add, in our models, a potential attracting the surface 
towards the wall. Then, at low enough temperatures and for sufficiently 
strong attraction, the surface Sticks to the wall. As we raise the tem- 
perature, we reach the wetting transition, and the surface detaches itself 
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from the wall. We shall not discuss this transition in detail here. It can be 
analyzed ~2~ for weak potentials using the Pirogov-Sinai theory. ~21) For, if 
the potentials are weak, the transition occurs at low temperatures and is of 
first order. 

We also study a continuum interface interacting with a wall, 
(~bx ~ ~+). We expect this model to be adequate when the wetting trans- 
ition is of second order. Again, we show that the interface is repelled to 
infinity by the wall, even in situations (d >1 3) where it would be essentially 
flat if the wall were absent. 

In the last section (Section 5) we briefly discuss another aspect of 
wettingJ 15~ Suppose that three phases, A, B, and C, coexist and that the 
surface tensions between the different phases favor the introduction of a 
layer of phase C at an interface separating the A and the B phase. Will this 
layer become macroscopic, in the thermodynamic limit? This problem 
involves two random surfaces, one being the A - C  interface, the other being 
the C - B  interface, constrained to lie one above the other. Although we 
have fewer results, we expect this situation to be quite similar to the one in 
Section 4, and our arguments partially support this idea. 

The problems analyzed in this paper, though concerning different 
physics, have a certain logical coherence. This justifies treating them in one 
paper. 

In order to make the reading of this paper lighter, we defer all 
technical proofs to several appendices. The main body of the paper is out- 
lined as follows. 

Section 2." (a) Description of the random surface models (S.O.S. 
and discrete Gaussian), and survey of known results. 

(b) Angular dependence of the surface tension, step-free energy, and 
their relation (via the Wulff construction) to the shape of crystals. Our 
main results are inequalities (2.8), (2.9). 

Sec t i on3 :  (a) Relation between the commensurate-incommen- 
surate transition and the ~b-cutoff Gaussian (or S.O.S.) model, following 
Ref. 12. 

(b) Effect of the ~b cutoff on this model when the surface has con- 
tinuously varying heights, (McBryan-Spencer model~3)). Estimates on the 
free energy, the correlation length, and the variance of the one-spin dis- 
tribution (Theorem 3.1). 

(c) Results for the discrete Gaussian model with a q~ cutoff: Bounds 
on the free energy (Theorem 3.2) and analysis of the phase diagram (conse- 
quence of the Pirogov-Sina/theory) at low temperatures, and temperature- 
independent bounds on the susceptibility; see (3.19). 
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Section 4: (a) The wetting transition: Models, exact results and 
correlation inequalities; see (4.6). 

(b) Entropic repulsion between a surface and a wall. Application of 
the Pirogov-Sinffi theory (Theorem 4.1). 

(c) Phase diagram for weak attractive potentials. For stronger poten- 
tials, we introduce a model of continuous surfaces and analyze the entropic 
repulsion in this context; see inequality (4.t4). 

Section 5: Wetting of an interface between two phases by a third 
phase. Models of two random surfaces, and comparison with the results of 
Section 4. 

Appendix 1: Proof of correlation inequality (2.8). 

Appendix 2: Proofs of all the results concerning the ~b-cutoff con- 
tinuum Gaussian model (Theorem 3.1 in Section 3.2), and inequality (4.13) 
in Section 4.3). 

Appendix 3: Proofs of all the results concerning the ~b-cutoff discrete 
Gaussian model (Theorem3.2 in Section3.3 and Theorem4.1 in Sec- 
tion 4.2). 

2. O N E  R A N D O M  S U R F A C E  

2.1. S u r f a c e  M o d e l s  and The i r  Phase D i a g r a m s  

The most commonly studied models of interfaces are probably the 
Ising and the solid-on-solid (S.O.S.) interface. The d-dimensional Ising 
interface is defined as follows: We take a cylinder A = [ - L , L ] d x  
[ - M ,  M] ~ 77 d+~ and we impose the following (_+) boundary conditions: 

ax= --I if x~A,  xa+~<0 

ax= + l i f x ~ A ,  xd+l>~O 

We have an infinite flat contour outside A separating + and - spins 
(between xd+~=0 and Xd+l = -1) .  Every configuration in A exhibits a 
(connected) extension of that contour which we call the interface. The 
shape of this interface may be quite complicated, and its statistical weight, 
obtained by summing the Boltzmann factor over all configurations having 
a given interface, is not simple either. However, this model can be analyzed 
completely at low temperatures. (3,22-24) In order to investigate what hap- 
pens at higher temperatures and also because it is an interesting model of 
crystal growth, one often considers the simpler S.O.S. or discrete Gaussian 
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models: at each site x of a d-dimensional lattice, we attach a variable 
~b~ ~ Y. The Hamiltonian in a finite box A c 2 a is 

HA,~(~b) = ~ I~b~- r ~ (2.1) 

where the sum extends over nearest-neighbor pairs and c~ is usually taken 
to be 1 (S.O.S. model) or 2 (discrete Gaussian (D.G.) model). We choose 
as boundary conditions q~x = 0, x ~ A, in (2.1). It is easy to see that this 
model mimics the Ising interface, ~x being the height (in the xa+, direc- 
tion) of the interface and r = 0 corresponding to an interface between 
x d + ~ = - 1  and xa+~=0.  That ~ Z  means that we have taken the 
M ~ ov limit in the Ising model. Actually the S.O.S. model (c~ = 1) can be 
obtained as a limit of anisotropic Ising models, where we let the coupling 
constant in the direction xa+~, perpendicular to the interface, tend to 
infinity. The D.G. model ( a = 2 )  is quite similar to the S.O.S. model, 
although it does not always have the same behavior (see Section 3, 
Remarks after Theorem3.2). It is a convenient model to analyze 
mathematically, because the related continuum model (where ~be2 is 
replaced by integration over ~b ~ ~) is exactly solvable: It is the Gaussian 
with mean 0 and covariance ( - A ) - ~ .  

In both models, the partition function is 

Za,~,~= ~ exp[--flHA.~(~) ] (2.2) 
q~xe Zs 
x ~ A  

Interesting quantities to analyze in these models are: The moments of 
the height distribution, (l~bxl)A or @ 2 )  A, and the correlation between 
heights at different sites: we may consider the behavior of (~bx~by) for 
Ix -y l  large (if (~b 2)  is finite), or else study ((q~x-~by) 2) (if ( ~ 2 )  is 
infinite). 

It turns out that the rigorous analysis of these models is quite com- 
plete, with the following results: 

(i) For d=l,  (IqkOl)A~lAl'/2; moreover,  ((~x-~y)2)~lx-yl. 
This holds for all temperatures. (5) 

(ii) For d =  2, there is a transition, called the roughening transition: 

(a) For fl large, ([~bor)A is uniformly bounded in [AI. More 
precisely, 

PA,~,p(l~b01 >~n)~exp(-cn~), Vn~ N 
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where PA,~.p is the Gibbs probability distribution associated with (2.1). 
Finally, 

(OxOy) ~<exp(-m I x -  Yl) 

with c, m~0(/~), a s / ~  oo. ~1'2) 
(b) However, for/~ small, (l~bOl)A--~(log I l l )  1/2 and 

( ( ~ x -  ~by) 2) ~-log I x -  Yl (Ref. 4) 

(iii) For d =  3, there is no phase transition. Indeed, for all/~, (l~bol)4 
is uniformly bounded in A, and @x~by)~<exp(-m Lx-yl) with m(/~)g 
0(/~), as/~ ~ Go, and rn(/~)gexp(-const/~),  as/~ ~ 0. (6) (This last point has 
been proven only for e = 2 but holds probably also for e = 1.) 

The results can be summarized as follows: Take ~ = 2  in (2.1) and 
replace the sum over ~beZ in (2.2) by an integral over ~b~ E with the 
Lebesgue measure. Then we obtain the massless Gaussian model whose 
solution is well known. (25) After proper rescaling, this continuum model is 
the /~ ~ 0 limit of the D.G. model. Now, for d =  1, the discrete model 
behaves like the continuum model, for all /~ (in one-dimensional systems 
the high temperature phase extends over all T >  0). For d =  2, this is true 
only for small/3, since for low temperatures the moments of I~b] are boun- 
ded, and the discreteness of the model generates a mass. The transition can 
be described as an "enhancement of symmetry" in the sense that, for /J 
small enough, the continuum (/~ = 0) limit governs the behavior of the dis- 
crete model, while, for/~ large, the discreteness of the model is relevant. For 
d =  3, the continuum limit never governs the behavior of the discrete 
model, and an arbitrarily small/~ generates a mass. 

The preceding analysis can be extended to the Ising interface only for 
d +  1 = 2, (a3'24) and for d +  1 >~ 3 at low enough temperatures. (3'22~ 

2.2. S u r f a c e  Tens ion  and the  Shape  of  Crysta ls  

We have seen that the most interesting dimension for "surface" 
phenomena is d =  2, where a roughening transition occurs. However, from 
a physical point of view, the divergence of (L~b])4 is so small (--Llog A] 1/2) 
that it is hard to observe it experimentally.5 It can nevertheless be observed 

5 The amplitude of fluctuations of the Pacific Ocean, ignoring any water waves, but after 
roughening has taken place is microscopically small. (We thank M. Berry for pointing this 
out to us.) 
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indirectly via the study of equilibrium crystal shapes. (9'~~ According to the 
Wulff construction, (1~) the equilibrium shape of a crystal is given by 

w =  {x: x . .  ~ ~(n)} 

where n is a unit vector normal to the crystalline surface, and re(n ) is the 
surface tension of an interface perpendicular to n (see Fig. 1). In order to 
define this surface tension more precisely, we introduce the following boun- 
dary conditions in (2.1): 

Let A = [ - L , L ]  a be a box of side 2 L + l  (and let d = 2  for sim- 
plicity). Let 

~b(--L, m) = 0, m =  - L  ..... L 
(2.3) 

~b(L, m) = to, m = - L  ..... L 

and let us delete from (2.1) the terms Iq~x-~by[ ~ for x = ( m ,  +_L)EA, y= 
(m, _%+ (L + 1))r A, m-- -L,...,  L. Thus we have fixed boundary conditions 
at different heights on opposite sides of the box, perpendicular to the first 

half spa~e/_ D 
, c~ 
f 

lilibrium Sha 
~/ XW, A<I 

Fig. I. Polar plot of surface tension, L~(n), and equilibrium shape 2W, for 2 < 1. 
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axis, and Neumann boundary conditions along the second axis. Actually, 
our results also hold for fixed boundary conditions (b.c.): 

~b(m, + L) = 0, m = -L,...,  0 
(2.4) 

~b(m, +_ L) = K, m = 1,..., L 

Similar b.c. can be defined for the Ising interface (see Appendix 1). 
Let ZA.~(~) denote the partition function of the S.O.S. model (e = 1) 

with these (0, ~c)-boundary conditions. [Notice that for ~c--0 it does not 
reduce to (2.2) if we impose Neumann b.c., while it does if we choose the 
b.c. (2.4).] The quantity 

1 1 
r ,  = - f i  limoo (2L+ 1) 2 log ZA., (~ =0) (2.5) 

is the free energy of the S.O.S. model and is the analog of the surface ten- 
sion in the Ising model. Next, we define r/3(O) = r,(n) (where n and 0 are as 
in Fig. 1) by 

1 l i r a  cos 0 
z ~ ( O ) = - ~  ~ (2L+l)21ogZA,/s[(2L+l)tanO] 

re(O ) = re 

and the step-free energy, 

(2.6) 

rflstep = Xl~Tl ~ 1 --~ yU-451og[z~,.(1)/zA,A (2.7) 

The importance of rfl step c o m e s  from the fact that it equals, formally at 
least, limo_o(d/dO ) r~(O). In the Wulff construction, this quantity plays a 
central role: Since r(O) is even in O, its derivative with respect to 0 should 
vanish when 0 approaches zero, unless r(O) has a cusp at 0 = O. However, it 
is easy to see that a cusp at 0 = 0 for r~(O) is equivalent, in the Wulff plot, 
to a flat facet in the crystal shape (the size of which is proportional to the 
strength, I(d/dO)z~(O)[0=01, of the cusp). Therefore, it seems natural to 
characterize the roughening transition in terms of (d/dO)r~(O)[0=o or, if 
one may identify this quantity with "eft step, t o  define firoughening as  

& = sup{f l  I ~;'~ = 0}  

The following is known about z~steP: 

(i) For d =  1, r~step=0, for all fl, and r~(O)~-cO 2, as 0----~ 0. (26) 
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(ii) For d =  2, we have a phase transition: 
,(a'): For/~ large, r stev > 0. 
(b'): For/~ small, r~steP=0.(4) [Compare to (a) and (b) above.] 

(iii) For d = 3 ,  Z'/~ step, which is dual to the string tension of the U(1) 
lattice gauge theory (with the Villain action) is strictly positive, for all/~(6~ 

Thus, the phase diagram, defined in terms of ~ ~tev, looks similar to the 
one defined in terms of (tq~oJ)- In fact, we expect both descriptions to be 
equivalent, but it is not proven rigorously that the transition temperatures 
are identical, for d =  2. 

In Appendix 1, we prove the inequality 

~/~(0) - z~(0)/> Isin 0[ ~step (2.8) 

for all fl, 0 ~< 0 ~< rr/2, and c~--1 in (2.1). This inequality holds not only for 
the S.O.S., but also for the Ising model (see Appendix 1) and implies that 

d 
lira ~-~ z~(0) ~> ze ~p (2.9) 
01o 

This means, as we explained above, that if r,~teP>0 then the 
equilibrium crystal shape obtained via the Wulff construction contains a 
flat facet. Of course, one expects equality to hold in (2.8), but we cannot 
prove this at present. 

The following provides a useful representation of re(0 ) and of r~ ~'~p" 
The partition function ZA,p(1) entering in the definition of the step-free 
energy (2.7), is, as the name indicates, a sum over surfaces containing 
(at least) one long step of height 1. This step is a (random) line transversal 
to the first coordinate axis. In ZA.r we have ~c such steps, and thus z~(0) 
can be viewed as the free energy of a gas of random lines transversal to the 
first coordinate axis, the density of these lines being tan 0. Clearly, z~ ~p is 
the free energy of one isolated line. The equality in (2.8) can be interpreted 
as the first term in a low-density expansion (density = tan 0=~0). However, 
the statistical mechanics of a gas of extended objects (such as lines) remains 
to be constructed, and therefore it is not straightforward to justify such a 
low-density expansion. Notice that surfaces contributing to the sum ZA,~(tC) 
contain, in addition to the K random lines, all kinds of defects that generate 
effective interactions between the lines. One can hope to control these 
interactions at low temperatures (see, e.g., Refs. 3 and 23 where similar 
effective interactions are studied) and to show that they are short ranged. 
However, even if this is done, a complete low-density expansion of z(0) 
does not appear to be easy. Moreover, the existence of a roughening trans- 
ition at higher temperatures points to a transition in this gas of lines. 
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3. ONE R A N D O M  S U R F A C E  BETWEEN T W O  WALLS 

3.1. C o m m e n s u r a t e - I n c o m m e n s u r a t e  Transi t ion in Uniaxial  
Systems 

In this section, we study the uniaxial commensurate-incommensurate 
transition along the lines laid out by Fisher and Fisher. (12) We manage to 
supply proofs of some of the assumptions going into their beautiful 
arguments. Let us consider, as in Ref. 12, an incommensurate phase, which 
is close to a transition to uniaxial commensurate order and in which an 
array of domain walls is formed. These wails separate regions of essentially 
commensurate order. They form a "one-dimensional" gas of fluctuating 
surfaces (in three dimensions) or lines (in two dimensions) perpendicular to 
a preferred lattice axis. There are short-range interactions and hard-core 
exclusion between different domain walls. For d =  2, the situation is quite 
similar to that found in the gas of steps on surfaces (tilted by an angle 0), 
described at the end of Section 2. 

A simplified model (neglecting short-range interactions other than 
hard-core) of these interacting lines or surfaces is the following one: Let A 
be a cubic box of side 2L + 1 in a d-dimensional lattice, {A[ = (2L + 1 )d. If 
the density of the walls is p, we introduce, at each site x e A, n(L)=-- 
[p(2L + 1 )] variables, ~b~,..., r with values in Y or R. (Depending on the 
situation, we shall consider both cases.) The variable q~ represents the 
height of the ith wall above site x. The Hamiltonian is 

n(L) 

H~A,~(r = ~ HA,~(O~), C~ = 1 or 2 (3.1) 
i = 1  

HA,~(O i) is given by (2.1), and the partition function is 

Za,t~(P) = ~ <  exp[ -/~H~,~(d~)] (3.2) 

" such that where the sum ~ <  extends over all d~ = (~bx)~= 1 

-L<~ 1< 2 < . . .  ~bx ..~ ~b x -.~ ~< ~b~ ~L) ~< L (3.3) 

For ~b~e ~, the sum in (3.2) is replaced by an integral with Lebesgue 
measure and the constraint (3.3). This constraint represents the hard-core 
interaction. The average distance between the walls is l =  
(2L + 1)/n(L) = p - t .  

The free energy of the gas of walls is 

ft'(P) = - ~  (2L+ 1) a+~ log Za,r (3.4) 
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The free eneergy per domain wall is defined as 

Op(l) = - ~  n(L)(2L + 1) a l~ Z~,a(p) 

Since n(L) = [p(2L + 1)], 

f a(p ) = pt/, ~( l) (3.5) 

Let z, be the free energy of a single wall, in the absence of other walls 

l:im ' { t ~ =  - f i  ( 2 L +  1) a l~ ~ exp[-/~H~,~(~b)] 
I~bxl ~ L 

~x~Z,xcA 

(3.6) 

We remark that, if we choose to regard (q~) as the location of the ith 
step in the tilted surfaces of Section 2 then r~, as defined here, is the analog 
of "eft s tep in (2.7) (the dimension d here corresponding to d -  1 in Section 2), 
and the fact that we do not fix the height ~bx along the boundary of A 
corresponds to Neumann b.c. in (2.7). Moreover, n(L) is the analog of ~c in 
Section 2.2, p of tan 0 in (2.6) and f~(p) of (1/cos 0 ) [ ~ ( 0 ) -  T~(0)]. 

We have the following inequality which is the exact analog of (2.8): 

o r  

ft,(P) >1 Pr~ (3.7) 

~ ( l ) / >  rB 

However, in this simple model, (3.7), unlike (2.8), is trivial: by relaxing 
the constraint that ~b~ ~< ~b~ + ~ in (3.2), we get 

~ <  exp[ -flH],~(dp)] ~< { 
I~l ~< L 

~xEZ,x~A 

exp[ -- flH A,~(~) ] } n 

which implies (3.7). 
One would really like to know how ~ ( l ) - f f ~ ( c ~ ) = ~ ( l ) - r ~  

behaves, as l = p - I  becomes large. Knowing this would yield the behavior 
of/ ,  as we vary ~ (~ acts as a driving potential), and we are particularly 
interested in the behavior of l when ~ approaches 4,(or) (i.e., l--* ~ ,  
p ~ 0), the critical point where the commensurate phase sets in. 

Computing 4/~(l) or fa(p) is not easy. One might try to first fix every 
other wall, i (~bx)x~ A, with i even say, and perform the sum over the walls of 
odd index. This leads to an effective potential between neighboring walls of 
even index, and one should then repeat the operation which, we expect, 
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will rapidly converge to f~(p), at least for small p. Instead of carrying out 
this construction, we truncate it at the first stage, and we simplify matters 
further, following Ref. 12, by choosing the walls of even index to be flat and 
equally spaced (~b~ = i. l, i even). 

Therefore we have reduced the computation o f f , (p )  to the analysis of 
one domain wall fluctuating between two planar hard walls separated by a 
distance 2L This system is simple enough that we can analyze it rigorously. 
Let C~ be its free energy, 

1 . 1 
~(l) = --~ llmoo ~ log Z~ (3.8) 

where 

 oi,l-- 
]Oxl<~l ( xy )~A  

OxeZ,xeA 

Clearly, ~ x  is replaced by SQI d~b~ if ~b~ is a continuous variable. For sim- 
plicity, we consider the Gaussian case, :~ = 2. We expect, as explained 
above, that 

O~(/) - ~(oo)___- Op(/) - ~ ,  as l ---, oo (3.10) 

For the left-hand side of (3.10), we can prove,.for continuous O, that 

I c1-2, d = l  

0 ~ t )~( / ) -  ~ ( o o ) ~  e x p ( -  c/), d = 2  (3,11) 

e x p ( -  c/2), d~> 3 

with c = c(fl); see Theorem 3.1. 
Throughout this paper we use the shorthand notation: f(1 x)_~ g(cU), c 

a constant, if and only if there are constants c~, c2 such that 

g(c~U) ~f(U)<~g(cfl ~) (3.12) 

Using (3.5), (3.10), (3.11), this result can be reexpressed as 

~pcp 2(V- 1)/3-v, v < 3 
f~(P)'~PZ~+ (pcexp(-~c/p), v = 3  

where v -- d + 1, and we have interpolated in v. The equilibrium density is 
obtained by minimizing fe(p) with respect to p, i.e., by solving 

d 
yof (p)=o 
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and 

This yields 
3 - - ~  

P ~ ( - r ~ ) ~ '  ~=2(v-1------~' v < 3  

p ~  - 1 / l o g ( - r ~ ) ,  for v = 3 

This is the result of Fisher and Fisher.~2~ The main point of this sec- 
tion is to provide a proof of (3.11). In Section 3.2 we explain how this is 
accomplished, along with providing more detailed information on model 
(3.9}, with q~ continuum. In Section 3.3, we treat the model with ~ discrete. 

3.2. The  C o n t i n u u m  Gaussian M o d e l  w i t h  a C u t o f f  

We focus our attention on the model defined by (3.9), with Sl_~dCx 
instead of a sum. We set fl = 1, since it can be absorbed into I by scaling. If 
we let l ~ o% we obtain the massless Gaussian lattice field whose moments 
diverge in d =  1 and 2. We should ask: How does a cutoff, given by 
X(f~J ~< 1), affect the massless Gaussian field? Or else: What are the critical 
exponents of this model when the Gaussian critical point (l--* oc) is 
approached? In particular, we are interested in the behavior of the 
correlation length ~(l), 

~(l)-l=m(l)= lira ~-~log(~bo~bx)(l ) (3.13) 
x ~ c O  I X l  

and also of the free energy 0 ( l ) - 0 ( o o )  [defined as in (3.8)], as l ~  oo. 
A first answer to these questions was provided by McBryan and 

Spencer, ~13) who showed that, for any l <  o% the correlation length ~(l) is 
finite. As pointed out by Sokal (27~ (see Proposition A1, Appendix 2), this 
implies that there is a unique Gibbs state, and the notation ( ( . ) ) ( / )  in 
(3.13) referring to the expectation in that state, is unambiguous. The 
estimate of McBryan and Spencer on ~(l) is dimension independent and of 
the form ~(l)~exp(cl2). As we shall see, this is qualitatively correct for 
d )  3, but not for d =  1 or 2. The d =  1 case can be easily settled by using 
transfer-matrix and random walk ideas (see Ref. 12 and Appendix 2). 

Let us briefly review how standard perturbation theory allows us to 
compute the behavior of ~(l), as l ~  oo, for d >  1. We start with a pertur- 
bation of the Gaussian which is less singular than )~(]~bl ~<l), namely, 
exp[-2V(~,b)], where V(~b) is polynomial bounded from below, and ,~ a 
small parameter. We keep in mind that 

= (3.14) 

822/42/5-6-3 
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and our cutoff perturbation is a limit of smooth perturbations, where the 
coupling constant 2 = l-2, tends to zero at the same time as the degree of 
V(~b) (=2n) tends to infinity. 

In order to compute m2(2)=~(2) -2, we consider S(p)= 
Zx (q)o~)eiP~, the Fourier transform of the two-point function. One 
expects S(p) to be approximately given by 

1 S(p)~p2 + m2(2 ) t- higher mass terms 

and therefore, 
S -  l(p = 0) ~ m2(2) 

We compute 

d 2 o d ~m (z)~-~ [S-I(p=O)] 

= lirn S 2 ( p ) [ ~  (~boOxV(@y))-(OOfbx)(V((Jy))] (3.15) 
p ~ O  x,y  

Now, we approximate the expectation ( ( . ) )  on the right-hand side of 
(3.15) by the Gaussian expectation with mass m2(2), (( . ))(m(2)) ,  which is 
expected to be the best effective Gaussian approximation. Then, using 
Wick's theorem, we obtain 

d 2 ~ m  (2)~ (V"(q$))(m(2)) 

or, since m2()~ = 0) = 0, 

m2(2) ~ 2( V" (~b))(m(2)) (3.16) 

For the cutoff perturbation, 1-Ixz([@xt~/), we find, by the same 
reasoning, 

dma(l)dl S-2 (0 ){~  - [ )  6(~by+/)])} - ~ (~oG; E6(G + 

The expectation on the right-hand side being Gaussian it can be evaluated 
explicitly (integrations by part), and we find to leading order 

d 
m2(/) ==- c/: <~(1@1 : / )  )(rn(/))  

d/ 
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Neglecting powers of l (which turn out to be negligible for d >  1) and 
noting that m(l = oo) = 0, we obtain the equation 

m2(/)-~(~(l~b] = l))(m(1)), for some g < oo (3.17) 

For d~> 3, we set re( l )=0,  on the right-hand side of (3.17), and we obtain 

m2( / )  ~ exp( - c~/2) 

with 

For d =  2, we have 

with 

which implies 

1-~2(q~o2 ) (re=O) 

rn2(/) ~ e x p [ - ~ ( m ) / 2 ]  

c~(m) l~_2(~bo;)(m) = const Jlog m] 

m(l) ~ exp( - const l) 

Once we know the behavior of re(l), we can also determine the 
behavior of other quantities of interest, such as Ip(l)-O(ov), by replacing 
the cutoff )~(l~b(~<l) by an effective Gaussian distribution, 
exp[-m2(l)~2/2],  and doing all the calculations explicitly with that effec- 
tive Gaussian measure. For example, if we want to know how @~)(l)  
behaves, as l ~ o% we find 

( ~ , ) ( I )  < oo, 

and 

Also, 

for d = 2  

for d = 3  

0 ~< (~b~)(/= ~ )  - @~>(/) ~< exp(-c/2)  

~exp(-cl ) ,  for d =  2 
~( l ) -O(~176 for d = 3  

That this heuristic calculation actually gives the correct asymptotic 
behavior of @o2)(1) and ~,(l), as l ~  oo, is the content of the next theorem. 
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T h e o r e m  3.1. Using the shorthand notation (3.12), we have, for 
the model defined in (3.9) and with ~b ~ ~, 

(1) o ~ ~(z)-  0(oo)_-__ 

l 2 d = l  

exp( - cl), d = 2 
exp(-cl2),  d>~ 3 

t 
l 2, 

(2) m(l )=~- l ( l )  ~- exp(--cl), 

exp( -- cl2), 

I I , 
(3) (~o~)(z)_-__ z, 

d = l  

d = 2  

d~>3 

d = l  

d = 2  

and 0~< @ 2 ) ( o 0 ) -  @2)(l)<~exp(-cl2),  for d~>3. 

The proof of Theorem 3.1 is based on the ideas described above. We 
write 

X(l~l ~< l )=  exp[-m(l)202/2] Z(l~bl <<. l)exp[m(l)202/2] 

Then we show, using the approximation (3.14), that the "non-Gaussian" 
part of the interaction (Z(l~b[ <<. l) exp[m(l)202/2]) is effectively small for l 
large. This proof uses only elementary tools, like integration by parts and 
correlation inequalities. It is nevertheless somewhat technical and is 
therefore presented in Appendix 2. 

3.3. The D isc re te  Gaussian and S .O.S .  M o d e l s  w i t h  a Field 
C u t o f f  

We now turn our attention to discrete models and examine the effect 
of the field cutoff, I~bl ~<l, in these models. First of all, we state in 
Theorem 3.2 some bounds for the free energy of the discrete Gaussian 
model that are related to those of Theorem 3.1. Then we analyze the phase 
diagram at low temperatures for the discrete models. (That analysis will be 
useful in Section 4.) Finally, we establish some bounds on the correlation 
length and on the susceptibility of the discrete Gaussian model which are 
relevant at higher temperatures. 

T h e o r e m  3.2. For the model defined in (3.9), we have, using 
(3.12): 

(1) O ~ ( l ) - O ~  for d =  l and for all /~ 
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--- exp( - c12), 
(2) O~<~,~(l)-~p~(c~) ~<exp(-cl), 

(3) 0 ~ ~,~(l)- O~(oe) ~ exp(-cl2),  

Proof. See Appendix 3. 

d = 2 and fl large enough 

d=2,vfi 

d=g, vfl 

Remark. For the S.O.S. model [-~ = 1 in (2.1)], the results are less 
complete. For d =  1, of course, we have the same results as above. For 
d>~ 2, we can only carry out a low-temperature analysis, which shows that 

q~ - ~p~ ) ~ e x p ( -  c/) (3.18) 

for /~ large enough and d>~2 (see Appendix 3). We do not have good fi- 
independent bounds for this model. We remark that (3.18) differs from the 
corresponding behavior in the discrete Gaussian model (l instead of/Z!). 
However, the difference is not too dramatic: (3.18) and Theorem 3.2 both 
say that ~~176  is exponentially small for large l. 

The analysis of the phase structure of the cutoff discrete ~b models is 
quite interesting and important in itself, and this can be done in detail at 
low temperatures, using the Pirogov-SinaY theory. (21) Let d~> 2, and fi be 
large enough. First, consider l=ov .  Then, by a standard Peierls 
argument, (I'2~ one shows that 

P(l~bx[ >/~) ~< exp( -ctc ~) 

with ~ as in (2.1). Here P denotes the probability distribution in the 
infinite-volume limit. 

However, by translation invariance, if we change our b.c. (boundary 
condition) from ~b = 0 to ~b = p, then we obtain 

P(J~bx - Pl ~> to) ~ exp( - ctG) 

Thus, we can construct infinitely many phases, ( ( ' ) ) p ,  with @ x ) p = p ,  
and the set of phases at low temperatures corresponds to the set of ground 
states, ~bx=p, Vx. It is therefore natural to ask whether there will be 
(2l+ t) phases at low temperatures if we introduce a cutoff J~b[ ~l .  The 
answer is no; there will be only one phase corresponding to ~b = 0 or, in 
other words, if we impose any b.c. ~b = p, [pp ~ l, on the boundary of A, we 
have 

and 

@ x )  A.p(l) --* O, as J A J ~  

Pt(Id~l ~> ~c) ~< exp(-cfl~c ~) 
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in the thermodynamic limit, where c is independent of l and ]3, (for large 
enough/~). 

This fact may seem a little surprising at first sight, but is easy to 
understand: Although there are 2 /+  1 ground states, this does not imply 
the existence of 2 l+  1 pure phases at low temperatures. The correct rule is: 
The ground states that will produce stable thermodynamic phases at low 
temperatures are those which admit the largest number of low-energy 
excitations, thus maximizing an entropy term. We order the excitations 
around all the ground states according to their energy and count, for each 
ground state, the number of excitations per unit volume of any given 
energy. Then we compare two ground states as follows: Ground state A 
dominates ground state B if there is an energy E such that A and B have 
the same number of excitations for all energies less than E, 6 but A has 
more excitations of energy E than B; (what happens for energies higher 
than E does not matter). Then, for low enough temperatures, the stable 
phases correspond to the set of dominant ground states, i.e., those that 
dominate all other ground states (and are therefore equivalent to each 
other, i.e., no ground state in that set has more low-energy excitations than 
another). The proof of this result v (which, in this form, was stated in 
Ref. 28) is by no means trivial: it follows from a combination of the results 
of Pirogov and Sina'i (21~ and of Zahradnik ~29~ (or of Preiss(3~ 

The application of this principle to our models is easy: of all the 
ground states, ~bx= p, IPb ~<l, the one with p = 0  has more low-energy 
excitations than any other ground state because we have two "spikes" 
~by= +p,  ~by= - p ,  with ]p] ~<l, (~x=0,  Ix-yl  = 1) per unit volume with 
energy 2d Lp] =. For all the other ground states, some of these excitations 
will not exist because of the constraint I~xl ~< l. Another more direct way of 
explaining this argument goes as follows: Suppose that we have a stable 
phase corresponding to the ground state ~bx=m; then, in typical con- 
figurations, we shall find ~bx = m, for most x, except on a sparse set of 
excitations. These excitations form a dilute gas, and we can easily compute 
an approximate free energy for this gas: An excitation, where ~by = m + h, 
~bx = m, I x - Y l  = 1 has an energy 2d [hi =. Keeping in the partition function 
only the configurations with these excitations gives 

- 0 n ( m ) -  log ZA(m)~ [A[ log exp(- /~2d Ih] ~) 
h =  - - r n  

6 E really measures the energy above a ground state energy (which we have set = 0). 
7 Under the additional assumptions of finiteness of the number of periodic ground states and 

validity of the "Peierls condition ''(21) which are valid in our models. 
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Clearly ~A(m), the free energy of this gas of excitations above the 
ground state ~bx = m reaches its minimum for m = 0. Hence the only stable 
phase will correspond to ~bx = 0. 

Thus, for the discrete models with cutoff [~bJ ~< l, (with a = 1 or 2) we 
have a unique phase (actually a unique Gibbs state) at low temperatures. 
We remark that, if we had 2l ground states instead of 2 /+  1, i.e., if the 
values of ~b range over the set { l -  1/2, l-3/2, . . . ,  - l +  1/2}, we would have 
two phases, in d>~2 dimensions, corresponding to ~b= _+1/2, at low tem- 
peratures. For the continuous ~ Gaussian model, in d~>3, and with no 
cutoff, we can produce, by choosing appropriate b.c., uncountably many 
phases, ((.)>o,, o)e ~, with <~b~>~=co. However, once we introduce the 
cutoff ;~(l~bl ~< l), then for any l, there is only one phase, and <8> = 0. The 
thermodynamic limit becomes independent of the b.c. (see Appendix 2, 
Proposition A1, for a proof). 

Now we discuss the correlation length ~(l) for the discrete Gaussian 
model. Our first observation is that 

<~o8~>(/) ~< <Oo~x>(/= ~)  

by the Griffiths-Nelson inequalities, (31,32} and therefore r < ~ ,  uniformly 
in l, whenever ~(l= oo)< o0. This holds in particular for d = 2  and fi 
large, (2) and for d~> 3 at all values of  ft. (6) For d =  1, it is easy to prove that 
r The most interesting situation is d =  2 and fl small, i.e., when 
the l = ~ model is in its rough phase. It is unclear whether the l < ~ model 
undergoes some kind of transition in this regime. For instance, one 
observes 8 that, at low temperatures, q~x = 0, for most x, and therefore there 
is percolation of the sites where ~bx = 0. At high temperatures, however, one 
can show that the sites where ~bx # 0  percolate (at least, if l is not too 
small). Does this correspond to some kind of phase transition? All we can 
say is that, for all d, fl,/, the susceptibility 

)<(l)= ~ <~bo~bx)(l)< oo (3.19) 
x ~ Z  d 

remains finite, so that the model is never critical [in this sense; we cannot 
prove, however, that ~(l) is finite for all fl]. In order to prove (3.19), we 
first apply the van Beijeren-Sylvester inequality (33) 

<qkoq~x>(l) <~ <~bo~bx>(/= o% m(l)) (3.2o) 

where on the right-hand side we have a discrete Gaussian model with a 

s We thank J. T. and L. Chayes for an interesting discussion on this point. 



764 Bricmont, El Mellouki, and Fr6hlich 

mass m([)= exp(-c l2) .  Now, if we consider the Fourier transform S(p)= 
~x~zdeiPX(~boqJ~>, the correlation inequality of Ref. 34 implies 

SD(p) <~ Sc(p) (3.21) 

for fixed m(l), where the index D refers to the discrete (~be Z) Gaussian 
model and C to the continuum (~b~R) one. Now, Sc(P)= 
[2 ~ =  1 (1 - cos p~) + m2(l)] -1 and, combining (3.20) and (3.21), we have 

X(/) ~< S D(p -- O) ~ rn- 2(1) 

4. ONE R A N D O M  S U R F A C E  A N D  ONE W A L L  

4.1. The W e t t i n g  Transit ion 

We consider a surface constrained to fluctuate above a rigid wall (see, 
e.g., Refs. 14-19 and 35-38). This is intended to describe an interface 
between two coexisting phases, one of which is supported by the wall. 
Specifically, we study the model with Hamiltonian 

HA = ~ ]~bx - q~.l ~ + a ~ V(~bx) 
< xy> c~A ~-~  x ~ A  

(4.1) 
o o  

and partition function ZA = ~, e x p ( -  flHA) 
c~x=O,xe A 

We shall focus our attention on the case a = 0. We shall however also 
consider the situation where a potential V(~b) attracts the surface towards 
the wall; for example (with a > 0) 

I -6(~b) (4.2) 

V(~b) = - e x p ( -  ~c~b), tc > 0 (4.3) 

For a more detailed analysis see also Ref. 20. 
One could include, in (4.1), a chemical potential #~b ( # > 0 )  which 

would occur naturally if the phase lying on the wall does not coexist with 
the bulk phase. In this case, one may also consider a repulsive potential 
[ a < 0  in (4.1)]. (35-38) 

This model can be viewed as an approximation to an Ising interface of 
the following type (18'~9'35 38): Consider a semi-infinite lattice Za++~= 
{x ~ Z a+ 1/xa+ 1 >~ 0}, and fix the b.c. ax = - 1 ,  for xa+ 1 = 0. This induces a 
negative magnetic field on the spins a~, Xa+l = 1. If we impose +b.c. 
(o-x---+1) on the other walls of a box A={x~Za+~[O<xa+~<M, 
- L  ~< x~ ~< L, e - -  1,..., d}, we obtain an interface in A separating + and - 
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spins. An approximation of the shape and the weights of this interface leads 
to (4.1), with a = 0 .  If we weaken the bonds between x a + ~ = 0  and 
xd+ ~ = 1, by replacing the coupling constant J by S J, 0 < S < 1, then our 
approximation yields (4.1), with V(O)= -6(#) .  

We study the following questions: If we impose the boundary con- 
ditions ~b~--0, xr  what is the behavior of @o>A, when JAI--* o% as a 
function of/3 and a? How does the correlation length within the surface 
depend on fl and a? 

In one dimension, the problem is completely solved, using transfer- 
matrix methods(~6'~s49'39): There exists a temperature Tw(a), for a > 0, such 
that 

lira @>A<OO, for T<Tw(a) (4.4) 
IAI ---, ov 

lira <~b>a = co, for T> Tw(a) (4.5) 
I A I ~  oo 

At Tw(a), the wetting transition occurs: For T above Tw(a), a droplet of 
the phase lying on the wall becomes macroscopic and completely wets the 
wall (or dries the wall, if the phase on the wall is gaseous~ For  d =  l, 
this wetting transition is second order: The correlation length ~--=-m -1 
defined, for T <  Tvz(a), by 

m = -  lira . . _ _ _ _ _  _ ___.v-2=loN(~yo6~.+~:)-fdy) a) 
x~ ~ o0 I X l ]  

diverges, as T'~ Tw(a), like I T -  Tw[ -2/3; <~bo > = limlAi ~ ~ @o >A diverges 
as I T -  Tw1-1/3/3% 

For a = 0 ( d = l )  and all T > 0 ,  <OO)A~fA[ ~/2. Thus Tw(a=O)=O. 
This is an instance of a general inequality (valid for arbitrary d) 

T~(a) <~ TR(a) (4.6) 

where TR(a), the roughening temperature, corresponds to the transition 
from (4.4) to (4.5), but for the model where ~ e Y  in (4.1) [and with I~bl, 
instead of ~b, in (4.4), (4.5)]. For a = 0, this is of course the model discussed 
in Section 2 and, as we explained there, TR(a = 0) = 0. Inequality (4.6) is a 
direct consequence of F.K.G. inequalities(4~ 

(4.7) 

because both F(~b)= I~bl p )~(~b >~0) and )~(q~>~ 0) are increasing functions of 
~b, and IqflP= F(~b)+ F(-r Inequality (4.6) and an other version of (4.7) 
also hold for the corresponding Ising model interface, as one checks by 
using F K G  inequalities. (4~ 
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4.2. One Surface and One Wall ,  W i t h o u t  an 
At t ract ive  Potent ial  

Now we turn our attention to d~> 2, a = 0, and fi large. We know that 
TR(a = 0 ) >  0, i.e., at low temperatures the interface is essentially flat and 
<106[ )A < oo uniformly in A (see Section 2.1). However, Tw(a = 0) = 0; 
indeed, we shall show that, for all d, all fi large enough, and a---0, 

lim <06>A= oO (4.8) 
IA I ~ co 

Again, this may be a little surprising but is easy to understand and is 
essentially the same phenomenon as the one discussed in Section 3.3, 
namely, that the cutoff (106[ ~< l) models have a unique phase. Indeed, for 
any/,  

<06x>A/> <06x>A(0 ~< 06 ~ 2l) (4.9) 

where in the right-hand side 06x takes the 2 l+  1 values 0, 1,..., 2l. This 
follows again from F.K.G. inequalities, (4~ because 06 is an increasing 
function and )((06 ~< 2l) a decreasing one. Now, perform the translation 06x = 
06~, + l. Then, 06" has the same distribution as the cutoff models (106'1 ~< l) of 
Section 3.3. The 06=0 b.c. become 06 '= - l .  However, since the cutoff 
models have a unique phase, <06'x>A,_l--+0 as IA l~oo ,  and so, 
<06.~>A(0<...06~2l)-+1~1~l. The lower bound (4.9), for the (06~7/+) 
model, gives limlz I ~o~<06~>z ~> l for any l, whence (4.8). 

This phenomenon is an instance of entropic repulsion: The surface (06x) 
wants to stay away from the wall, in order to have more freedom to fluc- 
tuate. This effect is due to low-energy excitations. If the surface is at a 
height h above the wall (~b=0) it has more (in fact, twice as many) spikes 
of energy 2d(h) ~ than at level h - 1 (spikes growing "downwards," ~by = 0, 
06x=h, Ix -y[  = 1, are allowed at level h, but not at level h -  1, because of 
the constraint 06>f0. Those growing "upwards" are allowed, for both 
levels). 

The following rough calculation gives more quantitative information 
on the behavior of <06x>A (see also Ref. 38): Suppose that the interface is at 
a height h - 1  near the boundary of a box of side L. If we increase the 
height from h - 1  to h, we increase the free energy by an energy term of 
order fiL e 1 (formation of a terrace). But, because more elementary 
excitations are allowed at level h, we also decrease the free energy by an 
"entropy" term of order exp( - f l2dU)L  a. The balance between both terms 
is achieved for h of order [fi-~ log(L/fl)] 1/~, c~ = 1 or 2. 

These heuristic considerations can be made precise, using the analysis 
of Pirogov and Sina'i, (21) and yield the following. 
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Theorem 4.1. For the model defined in (4.1), with a--0 ,  d~>2, 
and fl large enough, 

, , `  ~((C/t~)log[A[, for ~=1  
IA]-~ Z ~q)~)A=~((C/fl)loglAI) 1/2, for c~=2 

x G A  

where we used (3.12), and C is independent of/3. 

In Appendix 3 we give an "elementary" proof of this result. It is based 
on ideas of Refs. 21, 29, 30, and 41, but our proof is self-contained in the 
sense that we do not appeal explicitly to their results. 

FComorks. (1) In order to convince the reader that this entropic 
repulsion is due to the spikes growing downwards from the surface to the 
wall, let us contrast the present situation with the one of the "wedding 
cake" model(42): 

Take the Hamiltonian (4.1), with a = 0, as before. We shall describe 
the surface q~x in terms of walls and ceilings (3~ (see Appendix 3 for a more 
detailed definition): A ceiling is a connected set where ~bx is constant while 
a wall (similar to a contour in the Ising model) is a connected set of bonds 
where ~b x r ~by. The complement of a wall in 2 d is made of one infinite 
ceiling, called the exterior ceiling, and one or several finite, interior ceilings. 
The wedding cake model is defined by the following constraint: A wall can 
only lift the surface, i.e., the interior ceiling(s) must be higher than the 
exterior ceiling. One might expect that this constraint would make (q~)  
even larger than in the original model but, at least for the (~b >~ 0) model, 
this is not so: For the wedding cake model, it is fairly easy to show, using a 
Peierls argument, that 

( ~ x ) <  oo 

at low temperatures. The surface is similar to the one without the (~bx ~> 0) 
constraint. The reason is that, by construction, there are no spikes growing 
downwards in the wedding cake model, and such spikes are responsible for 
the lifting of the surface in the original model. To summarize, in the 
original model, the surface gets pushed upwards, away from the wall, only 
in order to enhance the growth of "small" downwards fluctuations which 
increase the entropy of the surface. 

(2) For the Ising interface on the semi-infinite lattice, 2d+ (see Sec- 
tion 4.1), we expect the same phenomenon to occur (this is also supported 
by mean-field computations(36~), but a proof would be more technical. 
Using the inequalities of Ref. 43, this result would imply the uniqueness of 
the Gibbs state for this model and thus, with these b.c. imposed there 
should be no (surface) phase transition in the semi-infinite Ising model. 
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Here we just present a heuristic calculation supporting these claims, 
but we expect that a rigorous proof would follow from an appropriate 
extension of Pirogov-Sinai theory. We impose - b.c. at the bottom wall of 
a region A = [ - L ,  L ]  2 x [0, M] c 2 3 (M---+ 0o), and + b.c. at the remain- 
ing faces of ~A. Let a = a(fl) denote the usual surface tension of the three- 
dimensional Ising model, and let ~r+ w denote the surface tension between 
the + phase and the bottom wall, cr vr the surface tension between the - 
phase and the bottom wall. Antonov's rule for the shape of a - droplet 
attached to the bottom wall says that 

(i) ~cosO=~r + w - a _ w  

where 0 is the contact angle between the surface of the droplet and the wall. 

+ 
- / - / - / - / / w a l l ,  W /  / - / - / - / - / - / 

Heuristically; the - phase wets the wall W if (i) does not admit any real 
solution for the angle 0, i.e., if 

(ii) a < a + w - a  w 

A heuristic proof of (ii) may be obtained easily by calculating the leading 
contributions to o-, a + w, and a_  ~v in a low-temperature expansion. These 
contributions are 

1 2 
(iii) a~---a ( 2 f i -  2e -4p) = 2 - - a  e-4~ 

P P 

This follows by studying the leading low-energy excitations, 

+ + + + + 
, 4 -  and 

+ 

+ +...r-----n + ~-- ~ + + 

1 
(iv) a+w"~-f i (2f l -e  4fl) 
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as one sees by considering 

+ + 
+ 

+ V-2-1 + + / v / +  
wall 

The reflected (downward) excitation is missing, because the wall is rigid. 
(This results in entropic repulsion.) 

(v) For  a ~v, we find 

1 

which is negligible. This is seen from 

IT] / _ wall 

Hence 

2 
cr ~- 2 - - f i  e 4 ~ 

< 2 - - f i e - 4 ~ - O  e 68 

~ G + W - - G _  W 

which is (ii). 
We remark that by weakening the bonds adjacent to the wall one can 

achieve that c~ is larger than ~r+ w - a _  w, and wetting disappears, as one 
may prove by a Peierls-type argument. 

It would be interesting to derive a mathematically precise form of 
Antonov's rule. 

4.3. The E f fec t  o f  an A t t r a c t i v e  Po ten t ia l  

No we consider model (4.1) with a ~ 0, d~> 2, and V given by (4.2) or 
(4.3). By using a Peierls argument, it is easy to show that, for any a > 0, 
( q ~ )  < ~ ,  for low enough temperatures. What happens when one raises 
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the temperature can be somewhat complicated, depending on V and a. Let 
us first consider low temperatures, a small, and, to fix the ideas, let c~ = 1 in 
(A1), and V= e-KO. We can use again the Pirogov-Sinai theory, which was 
extended to these models by Basuev (44) (but with no explicit applications): 
Then one can exhibit in the (a, T =/~ - 1) plane, an infinite sequence of lines 
of first-order phase transitions a , ( T ) ,  n = 1, 2,..., oe. These are similar to the 
layering transitions of Refs. 35-38. On the line a,(T),  we have coexistence 
between two phases, one with ~ = n -  1, for most x, and one with ~b~ = n, 
for most x. These lines accumulate towards the a = 0  axis and are 
approximately given by 

an(T)~exp{ - E2d/~(n + 1) - ~cn] } (4.10) 

The complete proof of the occurrence of these lines, for p large, is too 
long to be included here (see Ref. 20). The approximate equation (4.10) can 
be derived by using the low-energy excitations along the lines developed in 
Section 3.3 (see also Ref. 38). We associate a free energy, Fn, to each level 
~b~n as follows: From (4.1) we infer that there is an energy term, Un, equal 
to - a e - ~ n ;  there is also a loss of entropy (as compared to the level n = oo), 
due to the spikes growing downwards and forbidden by the constraint 
~b ~> 0, given, approximately, by 

S(n  ) - S(  oo ) ~ - e x p [ - 2 d ~ ( n  + 1)] 

Thus 

1 
F~ = U~ - T S  n _~ - a e  ~-n + ~ exp [ - 2d~(n + 1 ) ] 

P 

Minimizing Fn with respect to n yields (4.10). All these transitions are first- 
order, namely, the correlation functions are exponentially decreasing 
throughout this part of the phase diagram (a, T small). 

What happens for larger a's? We expect a similar phase diagram (tran- 
sition from @ x )  < oo to {~b~) = oo as one raises the temperature), but the 
transition may become second order, at least for d = 2 .  Indeed, when 
@x)A diverges, the correlation length, for perturbations within the surface, 
should not be too much affected by the presence of the wall and should 
therefore diverge (approximately) when an interface with no wall exhibits 
massless excitations. In other words, we expect that the wetting transition 
will be second-order, for values of a such that T w ( a )  happens to be larger 
than TR(a = 0). (This, however, is not meant to be an exact quantitative 
statement.) Thus one expects the following. 



Random Surfaces in Statistical Mechanics 771 

(i) For d =  1, the wetting transition is always a second-order trans- 
ition, since TR(a= 0 ) =  0, and this is known to be true. (ls'19'39~ 

(ii) For d =  2, we have just seen that, for a small, T~,(a) is small 
[see (4.10)], and the transition is first order. Here, TR(a = 0) is neither zero 
nor infinite. If we increase a, Tw(a) increases (this holds, by F.K.G. 
inequalities, ~4~ for any V(~b) which is monotone decreasing in ~b, for ~b ~> 0). 
Thus, for appropriate values of a, Tw(a) will be larger than TR(a = 0), and 
the transition should be second order. 

(iii) For d = 3 ,  since G6pfert and Mack have shown (6) that 
TR(a = 0 ) =  oo, one expects the transition to be always first order. 

Now we would like to say something about the rate of divergence of 
(~bo)A in (AI, when T>~ Tw(a), and a is such that Tw(a)> TR(a = 0). Since 
we know that, for T~> TR, the discrete ~b variable of the S.O.S. model 
should be regarded as effectively continuous, (4~ we study a model where ~b 
is a continuous variable from the beginning. Also, since we are interested in 
temperatures larger than Tw(a), where the wall does not bind the surface, 
we neglect the attractive potential. Thus, we consider the model (4.1) with 
a = 0, c~ = 2, and ~b continuous (but with the constraint ~b >i 0). It is rather 
easy to derive, for this model, nontrivial lower bounds on @x)A (with b.c. 
~bx=0, x(~A): As in (4.9) we use F.K.G. inequalities (4~ to obtain 

@x) m >>" @x) A(O <<, ~ <~ 2l) (4.11) 

and in the right-hand side, write ~b = q~'+/. Now, the q~' variables have the 
constraint I~b'[ ~<l and b.c. (/x = -l, xeA.  We know (see Appendix 2) that 
this cutoff Gaussian model has a unique thermodynamic phase and 
thus, (~b~)A,_t(l~b'] ~< l) --, 0, as IAf- ,oo .  Moreover, using G.H.S. 
inequalities/45'27~ [see Eq. (A12) in Appendix 2] we know that, if 

[AI=L d with L = ~ ( / )  1+~, e > 0  (4.12) 

and if l is large enough, 

I (~b;)A,_z([~b' I ~< l) ~< l (4.13) 

Thus by (4.11 ), 

with l and A related by (4.12). Inverting this relation and using the upper 
bounds on ~(1) of Theorem 3.1, we get the following lower bounds: 

t c(L) 1/~, for d =  1 
(~bO)A~> c logL ,  for d = 2  (4.14) 

c(log L) 1/2, for d~> 3 
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Remarks. (1) For d =  3, since we expect the wetting transition to 
be always first-order, this lower bound is not expected to be relevant for 
the wetting problem with discrete ~b~'s (see, however, Theorem 4.1). 

(2) We emphasize that these lower bounds include a nontrivial effect 
of the constraint ~b >I 0 (similar to the effect on discrete ~b's expressed by 
Theorem 4.1). Indeed, using F.K.G. inequalities (4~ to bound (q~)A (~b/> 0) 
from below by �89 )A (~be ~) (without the constraint), as in (4.7) would 
only give 

~c(log L) 1/2, for d =  2 

(~b)A~>~const,~ for d>~3 

5. T W O  R A N D O M  S U R F A C E S  

In this section we study a model where, instead of having one surface 
fluctuating above a fixed wall, we consider two random surfaces interacting 
through the constraint that one surface lie above the other one (see Ref. 15 
and references therein). This situation arises when we analyze three phases 
in thermal equilibrium, A, B, and C, and a layer of the phase C is 
developed at the boundary between the A and the B phase, in order to 
lower the surface tension. Then there are two interfaces, one between A and 
C, the other one between C and B. 

The Blume-Capel model (46'471 provides an explicit example of a model 
describing this situation: Let s~ = 0, 4-1, x e 2U + 1, and 

Z (sx-sy)2- Zs  (5.1) 
( x y )  x 

If we fix /t > 0, we have two phases (with sx predominantly equal to 
+ 1 or to -1 ) ,  at low enough temperatures. Using the Pirogov-Sinffi 
theory, (2~'4s~ one can prove that, for/? large, there exists a curve 

U(/~)_-__ e x p [ -  2(d + 1)/~] 

of first-order transitions where three phases coexist (with sx~ +1, - 1 ,  
or0). Let us fix /~ large and #=/~(]?), in (5.1). Let A=[-L ,L]ax  
I - M ,  M]  and put +_ b.c. on ~?A: For xCA, 

sx= +1, xd+l>~0 

s~= -1 ,  xd+a < 0  

It is energetically favorable to insert at least one layer of spins {s~ = 0} (the 
C phase) between {sx= +1} and {sx = -1} ,  because, taking into account 
(5.1), one finds 

(1 - -0 )2+  ['0-- (-- 1)']2 = 2 <~ [1 - - ( - - 1 ) 3 2 = 4  
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(we neglect terms oc#, because/t is small here). The question is then: What 
will the size of this layer of 0 spins be, as M, L ~ oo ? Since the 0 phase is in 
equilibrium with the other two phases, there is nothing, a priori, to prevent 
this layer from becoming macroscopic. This is again a wetting phenomenon. 
Another question is: Fix # > 0 small enough, and raise the temperature, 
starting from 0, towards the temperature at which the first-order phase 
transition occurs. For T strictly below that transition, the layer of the 0 
phase is expected to have a finite thickness, because of a bulk effect. How 
does that thickness grow with the temperature? Does it diverge, as the 
transition point is approached; i.e., is wetting a continuous or a discon- 
tinuous transition in this situation? We do not discuss this last question 
any further. Instead we introduce the S.O.S. (or D.G.) approximation (15) 
relevant to this two-surface problem and corresponding to the value 
# =/~(fl). Let ~b~x, ~b~ e Z, x E Z d. The Hamiltonian is given by 

HA,c~(qJ 1, qt 2 ) = HA,z(q~ 1 ) + HA,~(~b 2) 

+ a F~ v ( ~ -  ~ )  (5.2) 
xcA 

with Ha,c, given by (2.1), A = I - L ,  L]  d. 
The partition function is 

ZA,~3= ~ exp[--flHA,~(O I, ~b2)] 

and we set t _  2 _  ~b x - 0, for 6 A. If we set ~b 2 = 0, for all x, we recover the ~ x - -  X 
models considered in Section 4. The "potential" V(q~-~b 2) describes a 
possible attractive force between the two surfaces. One is interested in the 
qualitative behavior of (~b~- 2 (bx) A, as IAI ~ 0% as a function off i  and the 
coupling constant a. We expect that all the results of Section 4 remain valid 
in the present situation. In particular, using the Pirogov-Sinai" theory, one 
can show (2~ that, for a = 0, 

for fl large enough. If, however, a is large enough, (~blx-~b~)A remains 
finite, uniformly in A. 

There is an "entropic repulsion" between the two surfaces, just as 
between a surface and a rigid wall. However, the proofs are more com- 
plicated than in the case, where 2_  ~b x = 0 (see Ref. 20). 

822/42/5-6-4 
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Coming back to the Blume-Capel model, a result like (5.3) strongly 
suggests that the thickness of the layer of the {s~ = 0} phase will grow to 
infinity, as [A[-~oe, for #=#(f l ) ,  or, in other words, that the ther- 
modynamic limit of the Gibbs state with • b.c. is the pure, translation- 
invariant {Sx = 0} phase. This is true in all dimensions, d, in contrast to the 
well-known spin-l/2 Ising magnet (sx = +1), where for d>~ 3, +__ b.c. lead 
to a non-translation-invariant state at low temperatures. (3) 

Since the proofs of (5.3) and various related results are rather 
technical and involve methods which we do not wish to introduce in this 
paper they will be presented in a separate paper. The heuristics of the 
entropic repulsion between the two surfaces is, however, straightforward 
and very similar to that presented in Section 4. 
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A P P E N D I X  1: THE STEP-FREE ENERGY A N D  THE A N G U L A R  
DEPENDENCE OF THE S U R F A C E  TENSION 

Here we prove inequality (2.8). First of all, we state the corresponding 
inequality for the Ising model. For simplicity, we fix d +  1 = 3, but the 
results hold for any d. Let A = [ - L ,  L]  2 x [M, M]  and 

3 

Z < Z (A1) 
~ = 1  X ~ A  

where ~ = • and the sum over c~ runs over the natural basis of 7/3. Our 
results hold for the following two b.c., both denoted by (0, K), IKI < M: 
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(a) a~= +1, for X l = - L - 1 ,  x3~>0 

a x = - l ,  for x l = - L - 1 ,  x3<0  

ax= +1, for x l = L + l ,  x3>~tc 

a ~ = - l ,  for x l = L + l ,  x3<x 

and free b.c. in the x2 direction; or 

(b) ax= +1, for x,~<O, x3~>O 

a x = - l ,  for X l ~ O  , x 3 < O  

a~= +1, for x,>O, x3~>~c 

a~ = --1, for x~ > O, x3 < ~c 

If we let M ~ oe and J3 --' 0% Jl = J2 -- 1, we obtain the S.O.S. model. 
The first b.c. above lead to the "Neumann" b.c., while the second b.c. lead 
to the fixed b.c. (2.4). 

We denote by Z~,e(x) the partition function in the Ising model, with 
b.c. (a) or (b) above, and by Z~-,~ the one with + b.c. Following (2.6) and 
(2.7), we define 

with 

pllim ~ (2L + 1) 2c~  (Z~,~(w_~L)) ~ z~(O) = - -a  lim log 
M ~ oz~ \ Z A,fl / 

(A2) 

~c(L)_-__ (2L + 1) tan 0 (A3) 

and 

~ l i m  1 lim ~flstep ~ 
2L+ 1 ~ t ~  

Now we shall prove that 

( Z ~  (1)) (A4) 
log \ Z ~  (0)} 

v~(0) - rt~(0 ) > [sin 0t .~.flstep (A5) 

for the Ising model (A1) with b.c. (a) or (b). This implies (2.8) for the 
S.O.S. model which is obtained after taking the limit J3 ~ (X?. Using (A2), 
we write 

1/ira cos0 m 
z ~ ( 0 ) - - z ~ ( 0 ) = - ~  ( 2 L + l )  2 \ Z~3(0) ] (A6) 
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and 

Z~,fl(l~) _~_ ~- i  1 Z + - ( i +  1) 
Z~,f l(O) i=o Z+-( i )  (A7) 

Inequality (A5) follows from (A6), (A7), the definition (A3) of ~(L), the 
evenness of ~ (0 )  in 0, and the inequality 

Mlirn Z~,~(1) 7> lim 
Z~,~(i+ 1) 

Z~,~(i) 
(A8) 

which we now prove. We choose the b.c. (a) [case (b) is similar]. Observe 
that if we change, in Z~,B(i+ 1)/Z+e(i), the boundary spins a x =  +1 for 
xl= - L - 1 ,  O<~x3<~i, into a x =  - 1  and then take the limit M ~  Go we 
obtain limM ~ oo Z~,e(1 )/Z~,B(0 ). Thus we have to prove that this change of 
b.c. increases the ratio of partition functions. Since the boundary field 
induced by a b.c. ax = + 1 is equal to +J1 ,  it is enough to prove that 

_dd log[Zha •( i + 1)/ZhA,~( i) ] <~ 0 
dh (A9) 

for -Jl<.h<~ 'b J1, where in Z h we have the same b.c. as in Z +, except 
that we replace the boundary field +J~ induced by a x =  +1, for x, = 
- L - 1 ,  0 ~<x3 ~< i, by h. The derivative with respect to h, in (A9), equals 

y, 
X:Xl = --L 

{(ax)~,e(i+ 1 ) -  (ax)hA,~(i)} 

which is negative, termwise. 
This last claim follows from F.K.G. inequalities, {4~ because the state 

with b.c. (i) has more + spins on its boundary than the one with b.c. 
(i + 1), and hence dominates the latter state in the F.K.G. sense. 

A P P E N D I X  2: C O N T I N U U M  G A U S S I A N  M O D E L  W I T H  A 
C U T O F F  

In this appendix we prove our results for the model with Hamiltonian 

H =  Z (~x--Oy) 2 
(xy> 

and Gibbs state 

d#A(~b)=ZA ~ exp[-HA(~b)]  1-I Z(Ir <~l)d~ (AIO) 
x~A 
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where A c yd. We set fl = 1 (since it can be scaled out by changing l) and 
impose zero boundary conditions (b.c.) i.e., ~b x = 0, for x ~ A. 

We shall also consider, in the course of the proofs, more general 
single-spin measures, where Z(]~bxl ~<l) in (A10) is replaced by some dis- 
tribution p(~bx). The most general p(~b) that we shall use is given by 

p(~b) = exp[ -m2q}2/2 - (~b//') 2n ] g(l~bl ~< l) (Al l )  

All quantities (free energy or expectation values) defined with respect to 
this p(q~) depend on four parameters l, m, l', and n. This will be indicated 
by adding the symbols 

(l, m, [I', n])  (Al la )  

In several special cases, it is advantageous to use shorter notation. If 
p(q~) = exp(-m2~b2/2) Z([~bJ ~< l) then we write 

(/ ,m) (A l lb )  

In particular, if p is Gaussian, i.e., p(~)=exp(-m2~b2/2),  we add the sym- 
bol 

(o%m) (Al lc)  

If, in (All) ,  m = 0  and 1= o% then we write 

[l', n] (Al ld )  

The choice P(@)=Z(I@I ~ I) as in (A10), is indicated by adding the sym- 
bol (l). However, within the proper context we will omit this symbol. 

Expectation values in a finite box A with 0 b.c. are indicated by 
( ( . ) ) ~ .  We also consider + l  and - l  b.c., namely, q~x = + l  (or -1) ,  for all 
x r  as well as periodic b.c., denoted, respectively, by ( ( ' ) ) a , + l ,  
<())A,~. 

We note that the expectation values 

converge, as A ~'Z d, a consequence of Griffiths' inequalities, (31) and define 
infinite-volume Gibbs states. 

Proposition A1 (based on an argument due to Sokal(27)). If 

@oqt~) = lira (~bo~bx) A 
A ~ l  d 
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satisfies 
@0~bx) ~< e x p ( - m  [x[) 

for some positive m, then, for A = [ - L ,  L]  d, and some finite constant, 

i (~b0)A,_+t] ~< eL u- i e x p ( - m L )  (A12) 

and the infinite-volume Gibbs state is unique. Moreover, (by Ref. 13 or 
Theorem 3.1), the hypothesis always holds for some m > 0. 

Proof. (A12) implies that (~bo)A, •  as Ai"Z d, and this implies 
the uniqueness of the Gibbs state, by well-known arguments based on the 
F.K.G. inequalities; see Ref. 49. To prove (A12), we write 

(~O)A,+l= fo ( d (~O)A,h) dh 

where h is a boundary field acting on ~bx, for xeOA-{xeA[3yCA,  
Ix - y[ = 1 }. More explicitly, 

f[ (qt0)A,+,= dh 2 ((~O~)x)A,h--(~O)A,h(~x)A,h) (AI3) 
x e 3 A  

Now we use G.H.S. inequalities, (45) which hold for this model, (5~ to 
bound the truncated two-point functions in (A13) by their values at h = 0 
(where (~bo) a = (~b~)a =0) .  This yields 

from which we obtain (A12), since, by Grifi]ths' inequalities, (31) 

<r ~ (r 

This completes the proof of Proposition A1. | 

Now we turn to the following: 

Proof of Theorem 3. 7. The results for d =  1 are fairly standard. (12's') 
Using the transfer-matrix formalism, we reduce the problem to the study of 
an integral operator K with kernel 

K(Ox, ~@) = e x p [ - ( q i x - ~ b y )  2] on L 2 ( [ - / ,  l]) 

Then 0(l) is given by the logarithm of the largest eigenvalue of K and m(l) 
by the logarithm of the ratio between the largest and the second largest 
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eigenvalues ofK. (~b~) is given in terms of an expectation with respect to 
the eigenvector corresponding to the largest eigenvalue. It is well known 
that these quantities scale with 12. r 

Now we prove the theorem for d =  2 and, at each stage of the proof, 
indicate the necessary modifications for d~> 3. The proof is divided into 
several parts: 

(l)  We start with the upper bound on ~b ( / ) -~ (~ ) ,  and then we 
prove the lower bound. For this lower bound, we shall use the upper bound 
on {~b2o)(l) which is proven in part (3). 

(2) We prove the lower bound on m(l). This is based on the 
Lieb-Simon inequality (53) and several integrations by parts (a similar 
method was used in Ref. 62). Since this proof is rather long, we divide it 
into two steps, (a) and (b). 

We defer the proof of the upper bound on m(l) to part (4). 

(3) The upper bound on (~bo2)(I) follows rather easily from the lower 
bound on re(l) and the infrared bounds, using an idea of Ref. 56. The lower 
bound on (~b~)(l), however, again requires some work (integrations by 
parts and use of Brascamp-Lieb inequalities(59~). 

(4) Finally, the upper bound on re(l) follows easily from the lower 
bound on (~b~)(l). This will complete the proof of Theorem 3.1. Next, we 
present the details. 

(1) The upper bound on tp(/)-tp(c~). Consider ~b( / ) - tp(~)  and 
write 

0 < $(/) - $ ( ~ )  ---- $(/, 0) - ~9(l, m) 

+ ~(I, m) - ~ ( ~ ,  m) 

+ $(oo, m) - ~ ( ~ ,  0) (A14) 

where the definition of ~(l, m) follows from (Allb).  The mass m will be 
chosen later (as a function of l). 

We have the following bounds: 

and 

0 ~< g,(oo,  m )  - g,(c~,  0)  ~< c m  

o / >  r o )  - ~(t ,  m)  1> - ~ m  

(A15) 

(A16) 

for 0 < m ~ const. 
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Indeed, 

t~(oo, m) - r  O)= fo d ~  r m') dm' 

= m'(cb~)(oo, m') dm' 

<~ cm (AI7) 

since, by explicit computations with Gaussian measures, we know that 

((J2)(oo, m')<~cllogm'l, for d = 2  

~<c, for d>~3 

This proves (A15); (A16) is similar (using monotonicity in l). 
To get an upper bound on ~9(l)-~(oo) we insert the following 

inequalities in (A14): ~9(l, 0 ) - r  inequality (A15) for 
r m) - ~9(oo, 0), and the following bound on ~(l, m) - ~(oo, rn): First, 
we write it as 

which follows from the definitions. We can choose periodic b.c. in 
(('))A.p(m), since the thermodynamic free energy does not depend on the 
b.c. Then we use chessboard estimates, ~s2) since our interaction is reflection 
positive, which gives 

>~ (Z(lOol <<- l) ) A,e(m) 

= 1 -- (Z(l~bo] >~ l))A.p(m) 

>t 1 - e x p ( -  cl2/llog rnl) (A18) 

where the last inequality again follows from explicit properties of the d = 2 
massive Gaussian. Combining everything, we have 

0 <~ ~(I) -- ~(oo) <~ cm + exp(-- cl2/[log m[) 

Choosing 

m = exp( - c'l) 

yields the desired upper bound. 
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For d~> 3, we get e x p ( - c l  2) in (A18), and we choose m = e x p ( -  c/2) to 
conclude the proof. 

Next, we establish the lower bound on O( l ) -~ (oo ) .  We note that 
0(l, m) - 0(o% m) ~> 0 and 

0(1, 0) -- ~p(l, m) + ~p(oo, m) - O(oo, 0) 

= m'[(~b02 )(co, m ' ) -  (qt02)(l, m')]  din' (A19) 

For d =  2, 

@o2)(o% m') >~ c Ilog m'l (A20) 

while 

(A21) 

by Griffiths' inequalities and part (3) of Theorem 3. l, which will be proven 
later. Then, if we choose rn = e x p ( - c ' l )  with c. c' ~> g + 1, and insert (A21) 
and (A20) in (A19), we obtain our lower bound. 

For d~> 3, we use another method: 

- lira p - ~ l l o g t l - [  x([~bxt~<I)l (m=O)  

(with 0 b.c.). Let ( ( ' ) ) x  be the expectation value with a decoupling 
parameter 2 multiplying all terms ~b x.~by, x # y, in ZA and exp(--HA) on 
the right-hand side of (A10). 

We claim that 

Z(r~bx] ~<l) ~<0 (A22) 
2 

To prove this, it suffices to show that 

0--2. F,(a, 2) <<. O, for all a, n (A22') 

where 
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But (A22')follows by noting that 

-a ~2 

F,(a, 2) [ ' ~ F , ( a ' , 2 )  
02 Jo 02 ga 

da' 

with 
0 2 

~32 ~?a F,(a, 2) = - ~ ~ ((~bx/l)2~; ~bj~b k ) x,o 
x j k  

and applying Griffiths' inequality. 
Using (A22), we bound 

x E A  2 = 1  

x ~ A  2 = 0  

But, for 2 = 0, all the sites are decoupled, and it is easy to compute 
that, in this case, 0~=o( / ) -0x=o(Oe)~e  d2. By (A22"), this is a lower 
bound on 0(1) - O(oe ). 

(2) Let us start with the lower bound on re(l). For this, we use 
Lieb-Simon inequalities, (53) which hold for our model. (s4) We want to 
prove that 

2 ~ (~bo~bx)A(l)<l (A23) 
x ~ O A  

for A = [ - L , L ]  d, with L<<.e Ct, for d = 2 ,  and L<~c C~2, for d>~3. We start 
with d = 2. 

We use the formula 

Z([~b I ~< l )=  lim exp[-(~b/l) 2"] 
n ~ o o  

together with some kind of "diagonal argument": First we shall prove [-see 
(a) below] that, if we replace X(L~b I ~< l) in (A10) by exp[-(~b/l) 2"] and let 
n = l, then 

m( [l, n = l] ) ~> exp( - cl) (A24) 

Then we prove (A23), for suitable A, by using the bound on 
m([l, n = l]) and controlling the difference between the expectation values 
with the two different single-spin measures exp[-(~b//) 2l] and Z(l~b[ ~<l) 
[see (b) below]. 
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(a) Let us "add" to the Hamiltonian (A10) 

m 2 .,2 -TE 
x 

and let us integrate by parts, ~55'6z) with respect to the Gaussian measure of 
mass m (chosen later), the two-point function (~bo~b~)([/, n]). This yields 

( ( )OqSx)([ l ,n])=Cox_2nl-2, ,Z m 2,,-~ Co,( x y )([l, hi) 
Y 

+ m 2 • Co"~(~b~b, )([l ,  n])  (A25) 
Y 

where C o m - @ o ~ ) ( m , m )  is the Gaussian two-point function, and 
we have perturbed the Gaussian, at each site, by p(~b)= 
e x p [ -  (~/l)2"+ (m2/2) ~b2]. 

By Griffiths' inequalities,(3~) 

(~b~O~ "-~ )([I,  n])>~ (~bx~by)([I, n])(~b02"-2)(]-l, n])  

and therefore, 

provided that 

(~bo~b~)([l, n])~< C'~'x<~cexp(-m Ixl) 

2nl-2n (0o n-2 )( [l, n] ) >~ m 2 

Thus, choosing m2= exp( -c l ) ,  all we need is a lower bound 

2ni-2"(02"-2)([l ,  n])  ~> exp ( - c l )  (A26) 

for n =/.  We shall derive this lower bound by several integrations by parts. 
First of all, we apply Griffiths' inequalities, ~ to bound 

(~02"-2)([/, n])~> (~b2"-2)(~,  rn', [l, n])  

where we have added a mass term, �89 2 ~x  ~ b2, to the Hamiltonian on the 
right-hand side. We integrate by parts with respect to the Gaussian 
measure with mass m'. Thus 

(~n-z)(oo, m', [ l , n ] ) = ( Z n - 3 )  C00(r o r e '  2,-4)(o% m; [/, n])  

-- 2n1-2"~ ~ ' / '~2"  3(b2" l)(oo, m', El, n])  ~ O y  N "FO r y  

Y (A27) 
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Now, our method consists in reintegrating by parts (~bo2n-4), until we 
obtain a "Gaussian" term only involving products of covariances, C m', 
minus a sum of "remainder" terms. Then, using rather simple estimates and 
a suitable choice of m' as a function of I, we show that the "Gaussian" term 
is larger than the sum of the remainder terms, and this yields (A26). Let us 
bound the second term in (A27). By Griffiths' inequalities and Wick's 
theorem, 

(~b 2"- 3qt2" - '  )(o0, m', [l, n] )  ~ (q~o 2n- 3~b2x~ -1 )(m')  

[ 4 ( n -  1)]! 
~< [ 2 ( n -  1)]! 22(" 1) [(~bZ)(m')] 2("-1) 

~< c~nZ"(log m') 2~ 

In the second inequality we have bounded factors (~bo~bx)(m') by 
(~bg)(m'), and in the third and last inequality we have used Stirling's for- 
mula to estimate factorials and the bound 

@ 2 ) ( m ' )  ~< 8 Ilog m't 

for d =  2. Hence, if we now choose m' = e -"t and set n = l, we see that the 
second term in (A27) is less (in absolute value) than 

2nl -Zn(m, ) -2  cnn2n(log rn,)2, = 2lcle+2~t(~l)Zt (A28) 

where we have used that 

~ C~y = (m') -2 
Y 

Now we apply (A27) to (~bgn-4)(co, m', [-1, n] )  and iterate it until we 
obtain a pure Gaussian term equal to 

( 2 n - 2 ) !  
( n _ l ) ! 2  ~ 1(Co%) " ~ (A29) 

There are n -  I terms in the remainder each of which can be bounded 
by (A28). So the remainder is less than 212cte2"t(el) 2~, for n = I. 

The Gaussian term can be bounded from below, again using Stirling's 
' 2 t formula and C~' o = (~bo) (m)2  1log rn'L, by 

(c') z II(oa) l 
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for n = l and c' # c in (A28). Now, choose ~ small enough, so that 

l(c'o~)l > 212cte2~l~x 2l 

and the Gaussian term dominates the remainder. 
Coming back to the proof of (A26), we note that we have just derived 

a lower bound 

< ~ " -  ~ > ( U ,  n = l ] )  >I ~(c') '  r~'~ ' 

which clearly proves (A26). 

(b) Next, we prove (A23): We write 

<G4x>A(t) = < G G > A ( 0 -  <r162 0, Dl, n =Vl]) 

+ (~bo~b~>A(/, 0, I-7l, n=T/] )  (A30) 

where the expectation values on the right-hand side of (A30) have been 
defined in (Alla). 

By Griffiths' inequalities, 

<~oG>~(~, 0, [yl, n = 7z]) ~< <~oG>~,(Dt, n = ~/3) 

where, on the right-hand side, we have removed the cutoffs lqS~[ ~< L By part 
(a), (A24), 

m( [71, n = ?13) ~> exp( -  c7l) 

and therefore 

To bound 

<~boC~x>z(/, 0, [7l, n = Tl] ) ~ l 
x ~ O A  

for A = [ - L , L ]  2, with L ~ e x p ( c ' l )  (c '<c?)  
(A31) 

( G G ) A ( / ) -  (~oG>A(/, 0, D/, n = ~/]) (A32) 
x ~ c~A 

we simply replace exp[-(~b/Tl) z"] in (A30) by exp[-2(~b/?l) ~"] and dif- 
ferentiate with respect to 2. This yields 

(A32)= ~ d2 ~ <~b0~b~)~A 
x ~ O A  

f2 
x e O A  
y ~ A  

and the notation ( ( ' )5~  is self-explanatory. 
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Using n = 7l and I~bxl <~ l, because of the cutoff in (A32), we get that 

(A32) ~< ~(yl) -2~; ]A118AL l 2~;+ 2 

<~ e(fl)  - 2~; exp(3e'l) l 2~'1 + 2 (A33) 

using (A31 ). 
If we choose 7 large enough we can make (A33) as small as we wish, 

and (A23) is proven. 
For  d>~ 3, we modify our argument as follows. Let n = l 2 in part (a), 

and keep in mind the fact that C0% is bounded uniformly in m' in d>~ 3. 
Choosing m' = exp(-c l2) ,  we obtain @o~b~)([l, n = 12]) _< m' -, Cox. Part  (b) of 
the argument is as above, provided that we choose n = 7l 2. Of course, this 
lower bound on re(I) also follows from Ref. 13. 

Now, in order to complete the proof of part (2) of the Theorem, we 
still have to prove the upper bound on m(1). However, we shall first prove 
part (3) of the Theorem and then use it to prove this upper bound. 

(3) We start by proving the upper bound on (~2)(l) .  Such a bound 
follows rather easily from the lower bound on re(I) that we just proved. 
Indeed, the larger the mass, the smaller the variance of ~b 0. We shall adapt 
an argument of Ref. 56, Theorem 6.2, to our situation. Using the infrared 
bounds, (57) we know that 

( (~bo- ~bx)2)(l) ~ (({bo - q~x) 2 ) ( m = 0 )  

-~cln Ixl, for d = 2  

Furthermore, reflection positivity implies a spectral representation for 
the two-point function, (58) from which it easily follows that 

(OO~bx)(l)<~ ( ~ ) ( l ) e x p [ - m ( l )  fxl] 

Thus, for all x, we have that 

2@2 5(/){ 1 - exp[ - r e ( l )  Ix[ ] } <~ c in Ixl (A34) 

Now, set Ix l=exp(e l )  in (A34) and recall that m(l )>~exp( -c l )  [see 
part (2)], to obtain (~b2o)(l)<~ c'I. The d =  1 bound is trivial, since [~bol < l, 
and the d>~ 3 case will follow from our proof of the lower bound on (~b2)(1) 
which we now present. 

By Griffiths' inequalities, (31) 

({bo25(1)/> (~b2)(l, m) (A35) 

where we have inserted a mass term of strength m 2 on the right-hand side. 
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Integrating by parts with respect to the Gaussian measure with mass m 
gives 

<~bo 2 )(l, m ) =  Co% - ~ ,  Comx<~bo[6(~bx = l ) -  6(~b x = - / ) ]  >(l, m) 
x 

~> C~' o - 2m-2/{6(~bo = l) >(l, m) (A36) 

Now we estimate <6((~o=l)>(l,m). Since X(]~bt~<l) is a log-concave 
function of ~b, we know, from Brascamp-Lieb inequalities, <sg) that the 
marginal distribution of ~o in <(-)>(l, m) is of the form 

P(~bo) = exp( - am~bo 2) G(~bo) 

+ l  with ~_~ P(~bo) &b o = 1. Moreover, exp( -~m~bo z) is (up to a constant factor) 
the marginal distribution in the Gaussian measure of mass m. Thus am 
1/(c Ilogml), for d = 2 .  Finally, G(~bo) is even, log-concave, and thus 
monotone decreasing on ~+ .  Hence, we obtain 

< 6( (~ o = l)>(I, m) = exp( -- O~m 12) G(  I) (A37) 

and we may bound G(l) by G(I), for l~> 1, by monotonicity. Moreover, 

I +1 G(1)=�89 G(~)d~ 
- -1  

by evenness and monotonicity. Hence 

f +' G(l) <~ exp am e x p ( -  C~m~ 2) G(~) d~ 
l 

f +' = exp c~,~ P(d) d~ = exp c~m 
- - I  

This hound on G(l) and (A37) together give 

(6(q~o = l)>(1, m) ~< e x p [ -  (l 2 - 1)/(c Ilog ml )] 

Inserting this into (A36) and choosing m = e x p ( - c " I ) ,  with c" small 
enough, yields 

<~2>(l, rn)>~c'l, for d = 2  

which, by (A35), concludes the proof in the two-dimensional case. 
For d>~ 3, we use the same argument, but we can integrate directly 

with respect to m = 0  in (A36). This finishes the proof of part (3) of 
Theorem 3.1. 
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(4) Now we complete the proof of part (2) by proving the upper 
bound on m(1). To this end, insert the lower bound, (~bo 2) >f c'l (that we 
have just proven) into (A34), and choose Ix[ = exp(c'l/c). This yields the 
bound for d =  2. For d~> 3, the infrared bounds (57} give 

( ( ~ o  - ~x) 2 >(l) ~< ( ~ o  ~ >(m -- 0)(1 - e/Ix(~-2) 

Thus, instead of (A34), we now have 

(~b~)(/)(1 - e x p [ - m ( l )  Ix[ ]) ~< (~b2)(m = 0)[1 - c/[xl a 2] 

Using that 

(~b~)(/) >~ (~b2)(m --- 0) - e x p ( - e ' l  2) 

[part (3)], and choosing Ix]--exp(g/2), for g large enough, finishes the 
proof. | 

APPENDIX 3: DISCRETE GAUSSIAN AND S.O.S. MODELS 

In the first part of this appendix, we prove Theorem 3.2, which gives 
estimates on the free energy of the discrete Gaussian and S.O.S. models. 
This is essentially an extension of some of the results of Appendix 2 to the 
discrete models. 

In the second part, we prove Theorem 4.1. Namely, we show that, 
because of entropic repulsion, the average height of a surface lying above a 
wall and tied to it at the boundary of a box A diverges logarithmically with 
the size of A. 

Part  1: Proof of Theorem 3.2. We use indices D or C to dis- 
tinguish between the expectation values ( ( ) ) D  for the discrete (~b~Z) 
model and the expectation value ( ( . ) ) c  for the continuum (~ e R) model. 

For the upper bound on O~(l)-O~(c~) we follow, step by step, the 
proof of Theorem 3.1, part (1) (Appendix2). For d =  1, see Ref. 12. In 
order to bound (~bo2)D(oo, m ') [see (A17)], we use the correlation 
inequalities of Ref. 34, Corollary 3.2, which imply that this is less than 
(q}2) c(OO ' m'), for the continuum (~b e ~) Gaussian model. Thus, we obtain 
(A15), (A16), and we only need an upper bound on 

(Z(l~bo[ >~l))o(oo, m ) =  lim (z(i~ol >/[) )A,P,D( ~ m) 
AT~ d 

and then choose m as a function of l in a suitable way. For d>~ 2 and low 
temperatures, we know, by a standard Peierls argument, {~'2} that 

lira (Z([~bol >~ l ) )o(~ ,  m) ~ exp( -c f lF)  
m l 0  
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and we can take re(l)=exp(-c~12). For d =  2 and arbitrary/~, however, we 
u s e  

<)~(1@ol >~ l)>~(oo, m) = (exp(cqt o - c~bo) X(Iq~o] ~> l))l)(oo, m) 

exp ( - c / ) ( exp  c~bo)D(o% rn) 

~< exp( -- cl)(exp c~bo )c(oo, m) 

in the continuum Gaussian model (by the inequalities of Ref. 34). Hence 

(Z(J~bo] ~>/))D(O% m) ~ exp(--cl) exp(c' ]log rn]) 

We choose m(l)=exp(-c"l) with c" small enough, to conclude the 
pr~c~f of part (2), when d=2. 

For d~>3, we again set m=exp(-cl  2) and we note that, writing 
l im,,+0((  ) )D(~ ,  m) = ( ( . ) )D ,  we have 

(Z(l~bol ~> l))  o 4exp(--cl2)(eXp(Cq~o))D 

We write log(exp(c(~))D=c(~2o)a(2c), for some 0~<2~< 1, by the mean 
value theorem. Here (( '))D(2C) is the same as ( ( " ) ) v ,  except for a factor 
exp(2cq~) (in the numerator and in the denominator). By Griffiths' 
inequalities, (31~ and the inequalities in Ref. 34 

N~w 

( ~eCe~ ) c( OO, m = O) 
( ~ ) c ( e ) -  <eC+2)c(~,,._~O) 

is bounded, Ior d>~3 and c small enough [namely, c <  
1/2(~b~)c(oo, m ~-0)]. Thus we have shown that 

(Z(lr ~> l) )z) --~ c exp( - cl 2) 

which proves the upper bound tn part (3). For the lower bounds, we can 
use the same method as the one used in the pToof of Theorem 3.1 (for 
d~>3). 

For the S.O.S. model, we can prove (3.18) by the same method, since 
we know, by a Peierls' argument (1'2~ that, for/3 large, 

lira ()~([~ol>~l))o(oa, nQ<~exp(-ct3t) | 
rn~ O 

822/42/5-6-5 
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Par t  2: P r o o f  o f  T h e o r e m  4.1. We start, in part (A) below, with 
the easy half, namely, the upper bound In part (B), we first explain our 
general strategy in the proof of the lower bound. Then we introduce the 
necessary definitions and some of the intuitive ideas behind the proof. After 
this, we state our main estimate (Proposition A2) and, using it, prove the 
theorem (which is rather easy, given Proposition A2 and some ideas going 
back to Ref. 63). The remainder of this appendix is then devoted to the 
proof of Proposition A2. 

We shall denote by ~(. ))A(h, h') the expectation value in A, with b.c, 
~b~ = h, x ~ A, and with the constraint ~b~/> h', x �9 A [-with Hamiltonian 
(4.1) and a = 0 ] .  However, we still denote by ( ( ' ) )A  the expectation con- 
sidered in Section 4, i.e., with h = h'= 0. 

(A) The Uppor Bound. By F.K.G. inequalities (4~ (which hold for 
this model; see Ref. 60), 

(Ox) A ~ (~)x} A(h, O) = h + (~b'x)~(0, - h )  (A38) 

where we changed variables: ~b~ = h + ~b;. The ~b" variables have b.c. 0 and a 
constraint ~b~ t> -h .  Note, for later use, that, since Z(c/)'>~ -h )  is increasing 
in ~b', F.K.G. inequalities imply that @'~)(0, -h)>~0,  and by (A38), that 

( ~ ) A ( h , O ) ) h  (A39) 

Let A be the event that ~bi~ >~ - h ,  for all x e A, and consider the expec- 
~bi~. Then tation value (( ' ) )A(0,  --OO) with no constraint on 

~b~) A (0, -- oO ) = 0, by symmetry, and, by conditioning, 

o r  

0 = @')A(O, - -00)= (OI~)A(O, --h) PA(A) 

+ <r A ~) PA(A c) 

(r  - h )  = -(O'x)(O, A <) PA(AC)/[1 --/SA(AC)] (A40) 

Indeed, conditioning on A amounts to the same as imposing the con- 
straint ~b'x >~ -h ,  Vx e A. Clearly PA denotes the probability determined by 
the state (( . ))A(0,  --oO). For this unconstrained system, we know that at 
low temperatures (1,2) 

P A(Ox --~ -n )  <~ exp( - c ~ n  ~) (A41) 

Now, conditioning on A c means that there exists an x ~ A with ~b~ ~< -h .  
Clearly, if we condition on the smallest ~by, y e A, to be equal to -- n ~< -h ,  
then 

~b~)(0, rain ~b~ = --n) ~> - n  
y e a  
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and 

by (A41). 

t - -  ! PA(min ~by = - n )  ~< [A I max P~(~by = - n )  
y ~ A  y E A  

~< ]AI exp(-cf ln  ~) 

Now the upper bound in Theorem 4.1 follows if we insert the last two 
estimates in (A40), (A40) in (A38), and choose h = (c'/fl log IAI)l/~, with c' 
large enough, so that 

I <~b2)(0, AC)] P A ( A  c) <~ [A[ ~ n exp(-cf ln  ~) 
n = h  

~-IAlexp(-cflU)~O, as IA]--+oc (A42) 

(B) Proof of the Lower Bound. Our general strategy consists in 
finding a sequence of events AK such that P~(UKAK)~I, where PA is 
given by (( ' ) )A(0,  0), and, for each A K, choosing a region 

Ax, with IAKI/[AI~I 

such that 

@x)(AK)>~(e/fl)loglAI, for x e A  x 

Using ~bx~>0, for xCAK, or for the events not in UKAx, gives the 
lower bound in the theorem. 

To simplify our notations, we shall set d =  2 and ~ = 1 in (4,1). We 
shall describe each configuration (r in terms of walls (and ceilings): 
Two bonds (xy) ,  <x'y') are adjacent if the distance between them is less 

than or equal to xf2. A set of bonds is connected iff any pair of bonds in 
that set can be linked by a sequence of adjacent bonds. For each con- 
figuration (q~x)x~A, we decompose the set of bonds into maximal connected 
sets where ~bx r ~by. A wall is a pair w = (w, ~bw), where w is such a set of 
bonds, and ~b,, is the restriction of the configuration to w. A ceiling is a con- 
nected component of the complement ofw. For a given wall, there is one 
exterior ceiling and one or more finite, interior ceilings. 

The energy of a wall is 

E(w)= ~ [O~-~yl 
<xy> e w 

and we can write (4.1) as 

w 
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Clearly, 

E(w) >~ Iw[ = number of bonds in w (A43) 

The walls are similar to the contours in the Ising model and are the 
basis of a low-temperature expansion for the S.O.S. model without 
constraints. (2~ Here we shall use a different notion of contours (related to 
the one used in Ref. 41) which are defined on a "large scale," i.e., a notion 
which depends on A itself. The intuitive motivation for the introduction of 
these new contours is as follows. Usually the contours of a configuration 
correspond to those regions, where the energy of the configuration is large, 
and therefore they have a small probability, for/~ large. Here we must deal 
with an additional, totally different effect: If the surface is not very high 
(with respect to ~b = 0) it looses a lot of low-energy excitations ("spikes") in 
comparison to a higher-lying surface. We want to make use of these low- 
energy excitations, in order to prove that it is improbable for a surface to 
be close to the wall, and therefore we want to include in our notion of con- 
tours the regions where the height of the surface is anomalously small. 
However, since the weight of a spike is small [--exp(-4/~p),  for a spike of 
height p]  at low temperatures, we shall only be able to take advantage of 
this damping factor if the surface is low over a large region: If a surface has 
height p - 1  over a region A, then the loss of free energy is roughly (see 
Section 4.2) [~[ exp(-4/~p), and this term is large only for IAI ~>exp(4/~p). 

Let us now define the "large-scale" contours. First of all, we fix a num- 
ber n (large enough) and prove the lower bound only for regions A = Aq = 

[ - L q ,  Lq] 2, with IAql=exp([lq), where q = n ' m ,  and m e n  is large 
enough. 

The fact that, by F.K.G. inequalities, (4~ (~bx)A is increasing in A [if 
A c A', setting ~b~ = 0 on A ' \ A  amounts to multiplying by the function 
1-Ix~x'\A Z(~bx ~< 0) which is decreasing] allows us to restrict our attention 
to the regions Aq. Let B o -  [ - b ,  b[ 2, with tBol =/~ exp(4/~m) (i.e., the size 
of Bo depends on A, namely, IBol =/~ IAl4/n). We cover A with translates, 
B~, of B o, Bi =- Bo + ib, ie Z 2 (these boxes overlap for [i-j{ <~ x/~). 

Given a configuration (~b~)~m, we call a box B~ regular iff (i)for all 
walls, w, such that w c~ Bi ~ ~ ,  

E(w) ~<4m = (4//~n) log [AI (A44) 

(ii) ~b~ ~> m, for all x e B i that do not belong to an interior ceiling of a wall 
w, with w ~ B~ r ~ .  

Notice that ~x is constant on the set of sites, x, specified in (ii). 
A contour is a maximal, connected set of irregular boxes (two boxes B~, 

Bj being "adjacent" if l i - j l  <~ ~ i.e., if they overlap). When no confusion 
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arises, we shall use the same letter F to denote a contour and the 
corresponding subset of the lattice ( J ~ r  B. 

Now we observe that our b.c. ~bx=0 and our previous definitions 
imply that all the boxes outside A are irregular. Let F be the contour inside 
A which is connected to these irregular boxes; [IFII denotes the number of 
boxes in F, and Pa the probability distribution for surfaces over A = 
I - L ,  L] 2 with b.c. q~x=0, xCA. Then our main estimate is the following: 

Propos i t ion  A2: 

PA(IIF[I~L3/2)--,O, as L - * ~  (A45) 

It should be noted that the exponent 3 on the left-hand side of (A45) could 
be replaced by any 7 e (1, 2). 

Proof of Theorem 4. l, Given Proposition A2. The events AK men- 
tioned at the beginning of (B) (proof of lower bound) will be defined to be 
the different contours F with IIFIJ<~L 3/2 and AK=A\F ,  where 
F = F w  {regular boxes intersecting F}. Clearly, IAKX~-4L2~IAI, as 
L ~ 0% because [P[, the number of sites in f is of the order of H_r'rl IBI 
[[FII/~ exp(4/~m)-~ ~L3/2L4/=~ L 2, for n large enough. We have still to bound 
@x)(F) ,  conditioned on F, for x ~ A \ P .  Since F is connected to the 
exterior of A,. if x r then x belongs to one of the interior components 
surrounded by F, which we denote by V. The boundary of these interior 
parts, ~V, is defined as the (connected) set of regular boxes in V that inter- 
sect F (i.e., they belong to F \ F ) .  From the definition of a regular box it is 
easy to deduce that we can find a closed path of nearest neighbors in 7/2: 

2= ~,((x V'i,i=l I l x i+ l -x i l= l , x , , - - x~}  

such that (i)rc~ 0V; (ii) V c  Int re, where Int ~ denotes the region interior 
to ~ [here d = 2 ;  in general, ~ will be a (d-1)-dimensional  surface]; 
and (iii) 

~bx, >f m, gxi E ~c (A46) 

Indeed, in a regular box, the walls are small compared to the size of the 
box; ([wl ~< E(w) ~<log IAI ~/~ IAI 4/~ = IBI). Therefore, any side of B can be 
joined to any other side by a sequence of points outside the walls. This 
property also holds for a connected set of regular boxes, such as 0V. 

Notice that, since the interaction is nearest neighbor, conditioning on 
the values of q~x along a closed path ~ decouples Int ~ from the rest. With 
this in mind, we write 

( (b~) r=  ~ Pr(~)" (gi~)(rc) (A47) 
TC 
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where we condition on the outermost path, ~, satisfying the three proper- 
ties (A46). This conditioning is equivalent to requiring b.c. Cx >/m on Int ~, 
because choosing the outermost path does not impose any condition on the 
spins in Int ~t. 

By (A39), this implies (r and, by (A47), 
((bx)r>~(c/fl)log IA], i f x e  V. 

This completes the proof of the desired lower bound. | 

Proof of Proposition/12. First of all, we make two changes in the 
partition function appearing in the denominator of PA(')" We start by 
replacing the b.c. ~ = 0 by ~ = h =- (c/fl) log IAI, with c large enough. This 
produces an error of at most exp(fih lSAI)~_expl-c(log IAI) 18AI], due to 
bonds across 8A. Once we have chosen the b.c. r = h we change variables, 

~'x=r 

and we remove the constraint r  which, for the variables r  is 
~b~,.- -h. 

We use the notation ZA(h,h') for the partition function with 
b.c. {bx = h, x e 8A, and constraint ~ ~> h', for all y e A. Furthermore, 
ZA(h, h'lF) denotes the partition function with the same b.c. and con- 
straint, conditioned on the presence of the contour F. The above argument 
then shows that 

z~(o, o I v) P~(v) = 
zA(o, o) 

~< c' exp(c 18Af log IA{)" 

We now note that 

z~(0, 0IV)z~(o ,  - oo) 
z~(o,-oo) ZA(O,--h) 

z~(0, - h) 
= 1 - P~(min Cy < - h )  

ZA(O, -00)  y~a 

>~ const > 0 

provided the constant c in our choice of h is large enough. This follows 
directly from (A41), as in the proof of (A42). Hence 

PA(F) <~ E exp(c 18A] log ]AI) 
z~(o, olv) 
Z.(0, - o o )  

(A.48) 

Now we shall prove that the last ratio of partition functions is less 
than exp( -cf l  JIFI]). This will imply (A45), since ]811 log jA[ <L 3/2, for L 
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large (here d = 2 ;  the exponent 3/2 could be replaced by any 7, with 
1 < ~ < 2). There are two kinds of irregular boxes in F, depending on which 
of the two conditions, (i) and (ii), defining a regular box is violated: Either 
there exists a w with w ~ B C Z  and E(w)>~4m+ 1; or (A44) holds, but 
~bx = p ~ m - I, for the sites x ~ B which are in the exterior of all the walls 
in B. We denote by F 1, resp. F 2, the subset of F composed of the first, resp. 
the second type of irregular boxes. 

We note that 

ZA(O, OIF)~ ~ ~"A(WI,'",WnlF2) 
{wl ........ } 

where the sum extends over all sets of walls {wi}7- 1, with E(wi) >~ 4m + 1 
and wic~ B r ~ for some Be  F1, for all i. The inequality comes from the 
fact that we relax in 2A(W~,..., W, IF2) the constraint ~bx ~> 0 and sum over 
all configurations (still with 0b.c.), except those containing some 
downwards spikes of height m localized in a box B e F 2. This means that 
we exclude the configurations, where, for some x e B (B e/'2), q~x---P- m, 
and ~. = p, for all y with l Y - x l  = 1. In other words, all possible walls are 
allowed except such downwards spikes, which do not appear in ZA(O, 0IF)  
either, by definition of F2. Now we can write a convergent low-temperature 
expansion (as in Ref. 2) for log ZA(Wl,..., w, IF2) and for log Z A ( 0 , -  0C): 
For example, 

1ogZA(0,--~)= ~ q)r(W)exp[-- f lE(W)]  
W~A 

where the sum runs over all multiplicity functions, W, defined on the'set of 
walls in A, the q~r(W) are the usual truncated functions, (~'61) and E ( W ) =  
52,; E(w) W(w) [sum over all walls: W(w) =- multiplicity of w in W]. 

As a result of those expansions we obtain 

log 2 A( W l ,..., W ~ I F2) --log Z A( O, -- Or) 

<~--~ ~ E(w~) -c  exp(-4/~m)[B[ ItF2dl 
i=1 

+ c' exp(-4f l )  ~ [w~[ (A49) 

where the first term is simply the total energy of the walls w~ coming from 
ZA(W 1 ..... W, r F2); the second term comes from the absence of the spikes of 
height m in boxes of F2, when evaluating 2A(w~,..., w, IF2)--which are 
summed over when one calculates ZA(O, --Oe). The volume of the region 
where those spikes are suppressed is ]B[ �9 pIF2] p. The third term in (A49) is a 



796 Bricmont, El Mellouki, and Fr6hlich 

correction coming from the fact that in evaluating ZA(0, --O0) we also sum 
over the walls w such that w intersects ws, for some i=  1 ..... n, and 
moreover from a boundary term in the expansion of log ZA(wl,..., wn IF2). 
This correction is proportional to the largest weight of a wall [exp(-4/3)] 
times the total length of the walls w~,..., w~. Concerning the other boundary 
terms in the expansion, those along ~?A, they cancel since we have the same 
b.c. in both partition functions. Using (A49), and the size of IB[ = 
fi exp(4~m) we get 

ZA(O, O IF) 

ZA(O, --00) Iw~ ....... } 

where 

2~(wl,.. . ,  w,  I r : )  
ZA(0,  - oo) 

{ w~,...,w~ } i =  t 

x exp(-cf i  L[FzJ[) (A50) 

E(w) =- E(w) - c'/fi exp(-4fl)  ~ Iw,I (A51) 
i - - 1  

with c' as in (A49). For fi large, E(w) is a small perturbation of E(w) 
[see (A43)]. 

Now we shall sum the factor exp[-fiZT_l/7?(wi)] in (A50) over 
{wl,..., w~}. Since each wi intersects some B ~ F ,  we have 

{wl,... ,w~} i =  1 

~< 1-I ~ ~ exp[-- fiE(w)] (A52) 
B E f ' I  n 1 w : w c ~ B . / = ~  

E ( w ) > ~ 4 m +  l 

Observe that, by definition of E(w) and (A43), 

exp[ - f iE(w)]  
w:w given 

E ( w ) > ~ 4 m +  l 

~< c exp{ - gfi[max([wJ, 4m + 1)] } 

where c is independent of/~ and m. 
Using this observation, (A51) and a standard Peierls argument, one 

gets, for fi large, 
e x p [ -  fiE(w)] 

E(w}  >14rn + l 

~< IB] exp[ --(4rn + 1/2)fl] =/~ exp(--fl/2) (A53) 
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where  the last  equa l i ty  uses the def in i t ion  of B, in  pa r t i cu l a r  

IBI = /3  exp(4m).  

I n s e r t i n g  (A.53) in  (A.52) a n d  us ing  e x p ( x ) -  1 g x ,  for x small ,  we get 

(A52)  ~< exp(  - eft H F~ It) 

C o m b i n i n g  this last  i n e q u a l i t y  wi th  (AS0) a n d  (A48),  we o b t a i n  (A45), 

because  IIFil = IIF~II + HF211. Thi s  conc ludes  the  p r o o f  of  P r o p o s i t i o n  A2. | 
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